Carlos-Francisco Méndez-Cruz

LSA word embedding examples

c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement
m1: The generation of random, binary, ordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey
"""Pirated example from Gensim library (a NLP specialized tool):
https://radimrehurek.com/gensim/tut2.html
https://radimrehurek.com/gensim/wiki.html#latent-semantic-analysis
Ignacio Arroyo
"""
import gensim
import logging
from six import iteritems
from gensim import corpora
import argparse
from pdb import set_trace as st # Debug the program step by step calling st()
# anywhere.
class corpus_streamer(object):
""" This Object streams the input raw text file row by row.
"""
def __init__(self, file_name, dictionary=None, strings=None):
self.file_name=file_name
self.dictionary=dictionary
self.strings=strings
def __iter__(self):
for line in open(self.file_name):
# assume there's one document per line, tokens separated by whitespace
if self.dictionary and not self.strings:
yield self.dictionary.doc2bow(line.lower().split())
elif not self.dictionary and self.strings:
yield line.strip().lower()
# Logging all our program
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument("--n_topics", help="Number of eigenvectors picked up.",
default=2, type=int)
parser.add_argument("--input", help="Input file to perform LSA.",
required=True)
args = parser.parse_args()
n_topics=args.n_topics
n_docs=0
input_file=args.input
#input_file='/medargsia/iarroyof/Volumen de 384 GB/data/GUs_textform_noPeriods.txt'
#input_file='lsa_example.csv'
#input_file='wiki_sample/wiki_75_AA.txt.cln'
#input_file='wiki_sample/wiki_77_AA.txt'
# A little stopwords list
stoplist = set('for a of the and to in _ [ ]'.split())
# Do not load the text corpus into memory, but stream it!
fille=corpus_streamer(input_file, strings=True)
dictionary=corpora.Dictionary(line.lower().split() for line in fille)#open(input_file))
# remove stop words and words that appear only once
stop_ids=[dictionary.token2id[stopword] for stopword in stoplist
if stopword in dictionary.token2id]
once_ids=[tokenid for tokenid, docfreq in iteritems(dictionary.dfs)
if docfreq == 1]
dictionary.filter_tokens(stop_ids + once_ids)
# remove gaps in id sequence after words that were removed
dictionary.compactify()
# Store the dictionary
dictionary.save('lsa_mini.dict')
# Reading sentences from file into a list of strings.
# Use instead streaming objects:
# Load stored word-id map (dictionary)
stream_it = corpus_streamer(input_file, dictionary=dictionary)
#for vector in stream_it: # load one vector into memory at a time
# print vector
# Convert to sparse matrix
sparse_corpus = [text for text in stream_it]
# Store to disk, for later use collect statistics about all tokens
corpora.MmCorpus.serialize('lsa_mini.mm',
sparse_corpus)
## LSA zone
# load the dictionary saved before
id2word = dictionary.load('lsa_mini.dict')
# Now load the sparse matrix corpus from file into a (memory friendly) streaming
# object.
corpus=corpora.MmCorpus('lsa_mini.mm')
## IF TfidfModel
tfidf = gensim.models.TfidfModel(corpus) # step 1 -- initialize a model
corpus = tfidf[corpus]
## FI TfidfModel
# Compute the LSA vectors
lsa=gensim.models.lsimodel.LsiModel(corpus, id2word=dictionary,
num_topics=n_topics)
# Print the n topics in our corpus:
#lsa.print_topics(n_topics)
f=open("topics_file.txt","wb")
f.write("-------------------------------------------------\n")
for t in lsa.show_topics():
f.write("%s\n" % str(t))
f.write("-------------------------------------------------\n")
f.close()
# create a double wrapper over the original corpus: bow->tfidf->fold-in-lsi
corpus_lsa = lsa[corpus]
# Stream sentences from file into a list of strings called "sentences"
sentences=corpus_streamer(input_file, strings=True)
n=0
for pertenence, sentence in zip(corpus_lsa, sentences):
if n_docs <= 0:
#print "%s\t\t%s" % (pertenence, sentence.split("\t")[0])
p=[dict(pertenence)[x] if x in dict(pertenence) else 0.0
for x in xrange(n_topics)]
print "%s %s" % ("".join(sentence.split("\t")[0].split()),
"".join(str(p)[1:].strip("]").split(",")) )
else:
if n<n_docs:
pertenence=[dict(pertenence)[x] if x in dict(pertenence) else 0.0
for x in xrange(n_topics)]
print "%s\t\t%s" % (pertenence, sentence)
n+=1
else:
break
# ============================== Homework ======================================
# Modify the program for doing this for a sample of the English Wikipedia.
# Compute LSA for 20 topics and print the fist 10 topics.
# Take care of avoiding loading and printing documents of a large corpus, so
# change the number of documents to print or sample the entire set randomly and
# print a subset.
# ==============================================================================
No preview for this file type
This diff is collapsed. Click to expand it.
No preview for this file type