Showing
2 changed files
with
333 additions
and
0 deletions
1 | +# -*- encoding: utf-8 -*- | ||
2 | + | ||
3 | +import os | ||
4 | +from time import time | ||
5 | +import argparse | ||
6 | +from sklearn.naive_bayes import BernoulliNB | ||
7 | +from sklearn.svm import SVC | ||
8 | +from sklearn.neighbors import KNeighborsClassifier | ||
9 | +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \ | ||
10 | + classification_report | ||
11 | +from sklearn.externals import joblib | ||
12 | +from sklearn import model_selection | ||
13 | +from sklearn.feature_selection import SelectKBest, chi2 | ||
14 | +from sklearn.decomposition import TruncatedSVD | ||
15 | +from scipy.sparse import csr_matrix | ||
16 | +import scipy | ||
17 | +from imblearn.combine import SMOTEENN, SMOTETomek | ||
18 | +from imblearn.over_sampling import SMOTE, ADASYN, RandomOverSampler | ||
19 | +from imblearn.under_sampling import EditedNearestNeighbours, TomekLinks, \ | ||
20 | + OneSidedSelection, RandomUnderSampler, NeighbourhoodCleaningRule, \ | ||
21 | + InstanceHardnessThreshold, ClusterCentroids | ||
22 | +from imblearn.ensemble import EasyEnsemble, BalanceCascade | ||
23 | + | ||
24 | +__author__ = 'CMendezC' | ||
25 | + | ||
26 | +# Goal: training, crossvalidation and testing binding thrombin data set | ||
27 | + | ||
28 | +# Parameters: | ||
29 | +# 1) --inputPath Path to read input files. | ||
30 | +# 2) --inputTrainingData File to read training data. | ||
31 | +# 3) --inputTestingData File to read testing data. | ||
32 | +# 4) --inputTestingClasses File to read testing classes. | ||
33 | +# 5) --outputModelPath Path to place output model. | ||
34 | +# 6) --outputModelFile File to place output model. | ||
35 | +# 7) --outputReportPath Path to place evaluation report. | ||
36 | +# 8) --outputReportFile File to place evaluation report. | ||
37 | +# 9) --classifier Classifier: BernoulliNB, SVM, kNN. | ||
38 | +# 10) --saveData Save matrices | ||
39 | +# 11) --kernel Kernel | ||
40 | +# 12) --reduction Feature selection or dimensionality reduction | ||
41 | +# 13) --imbalanced Imbalanced method | ||
42 | + | ||
43 | +# Ouput: | ||
44 | +# 1) Classification model and evaluation report. | ||
45 | + | ||
46 | +# Execution: | ||
47 | + | ||
48 | +# python training-crossvalidation-testing-binding-thrombin.py | ||
49 | +# --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset | ||
50 | +# --inputTrainingData thrombin.data | ||
51 | +# --inputTestingData Thrombin.testset | ||
52 | +# --inputTestingClasses Thrombin.testset.class | ||
53 | +# --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models | ||
54 | +# --outputModelFile SVM-lineal-model.mod | ||
55 | +# --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports | ||
56 | +# --outputReportFile SVM-lineal.txt | ||
57 | +# --classifier SVM | ||
58 | +# --saveData | ||
59 | +# --kernel linear | ||
60 | +# --imbalanced RandomUS | ||
61 | + | ||
62 | +# source activate python3 | ||
63 | +# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-lineal.txt --classifier SVM --kernel linear --imbalanced RandomUS | ||
64 | + | ||
65 | +########################################################### | ||
66 | +# MAIN PROGRAM # | ||
67 | +########################################################### | ||
68 | + | ||
69 | +if __name__ == "__main__": | ||
70 | + # Parameter definition | ||
71 | + parser = argparse.ArgumentParser(description='Training validation Binding Thrombin Dataset.') | ||
72 | + parser.add_argument("--inputPath", dest="inputPath", | ||
73 | + help="Path to read input files", metavar="PATH") | ||
74 | + parser.add_argument("--inputTrainingData", dest="inputTrainingData", | ||
75 | + help="File to read training data", metavar="FILE") | ||
76 | + parser.add_argument("--inputTestingData", dest="inputTestingData", | ||
77 | + help="File to read testing data", metavar="FILE") | ||
78 | + parser.add_argument("--inputTestingClasses", dest="inputTestingClasses", | ||
79 | + help="File to read testing classes", metavar="FILE") | ||
80 | + parser.add_argument("--outputModelPath", dest="outputModelPath", | ||
81 | + help="Path to place output model", metavar="PATH") | ||
82 | + parser.add_argument("--outputModelFile", dest="outputModelFile", | ||
83 | + help="File to place output model", metavar="FILE") | ||
84 | + parser.add_argument("--outputReportPath", dest="outputReportPath", | ||
85 | + help="Path to place evaluation report", metavar="PATH") | ||
86 | + parser.add_argument("--outputReportFile", dest="outputReportFile", | ||
87 | + help="File to place evaluation report", metavar="FILE") | ||
88 | + parser.add_argument("--classifier", dest="classifier", | ||
89 | + help="Classifier", metavar="NAME", | ||
90 | + choices=('BernoulliNB', 'SVM', 'kNN'), default='SVM') | ||
91 | + parser.add_argument("--saveData", dest="saveData", action='store_true', | ||
92 | + help="Save matrices") | ||
93 | + parser.add_argument("--kernel", dest="kernel", | ||
94 | + help="Kernel SVM", metavar="NAME", | ||
95 | + choices=('linear', 'rbf', 'poly'), default='linear') | ||
96 | + parser.add_argument("--reduction", dest="reduction", | ||
97 | + help="Feature selection or dimensionality reduction", metavar="NAME", | ||
98 | + choices=('SVD200', 'SVD300', 'CHI250', 'CHI2100'), default=None) | ||
99 | + parser.add_argument("--imbalanced", dest="imbalanced", | ||
100 | + choices=('RandomUS', 'Tomek', 'NCR', | ||
101 | + 'IHT', 'RandomOS', 'ADASYN', 'SMOTE_reg', | ||
102 | + 'SMOTE_svm', 'SMOTE_b1', 'SMOTE_b2', 'OSS', | ||
103 | + 'SMOTE+ENN'), default=None, | ||
104 | + help="Undersampling: RandomUS, Tomek, Neighbourhood Cleanning Rule (NCR), " | ||
105 | + "Instance Hardess Threshold (IHT), One Sided Selection (OSS). " | ||
106 | + "Oversampling: RandomOS, ADACYN, SMOTE_reg, " | ||
107 | + "SMOTE_svm, SMOTE_b1, SMOTE_b2. Combine: " | ||
108 | + "SMOTE + ENN", metavar="TEXT") | ||
109 | + | ||
110 | + args = parser.parse_args() | ||
111 | + | ||
112 | + # Printing parameter values | ||
113 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
114 | + print("Path to read input files: " + str(args.inputPath)) | ||
115 | + print("File to read training data: " + str(args.inputTrainingData)) | ||
116 | + print("File to read testing data: " + str(args.inputTestingData)) | ||
117 | + print("File to read testing classes: " + str(args.inputTestingClasses)) | ||
118 | + print("Path to place output model: " + str(args.outputModelPath)) | ||
119 | + print("File to place output model: " + str(args.outputModelFile)) | ||
120 | + print("Path to place evaluation report: " + str(args.outputReportPath)) | ||
121 | + print("File to place evaluation report: " + str(args.outputReportFile)) | ||
122 | + print("Classifier: " + str(args.classifier)) | ||
123 | + print("Save matrices: " + str(args.saveData)) | ||
124 | + print("Kernel: " + str(args.kernel)) | ||
125 | + print("Reduction: " + str(args.reduction)) | ||
126 | + print("Imbalanced: " + str(args.imbalanced)) | ||
127 | + | ||
128 | + # Start time | ||
129 | + t0 = time() | ||
130 | + | ||
131 | + print("Reading training data and true classes...") | ||
132 | + X_train = None | ||
133 | + if args.saveData: | ||
134 | + y_train = [] | ||
135 | + trainingData = [] | ||
136 | + with open(os.path.join(args.inputPath, args.inputTrainingData), encoding='utf8', mode='r') \ | ||
137 | + as iFile: | ||
138 | + for line in iFile: | ||
139 | + line = line.strip('\r\n') | ||
140 | + listLine = line.split(',') | ||
141 | + y_train.append(listLine[0]) | ||
142 | + trainingData.append(listLine[1:]) | ||
143 | + # X_train = np.matrix(trainingData) | ||
144 | + X_train = csr_matrix(trainingData, dtype='double') | ||
145 | + print(" Saving matrix and classes...") | ||
146 | + joblib.dump(X_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb')) | ||
147 | + joblib.dump(y_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb')) | ||
148 | + print(" Done!") | ||
149 | + else: | ||
150 | + print(" Loading matrix and classes...") | ||
151 | + X_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb')) | ||
152 | + y_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb')) | ||
153 | + print(" Done!") | ||
154 | + | ||
155 | + print(" Number of training classes: {}".format(len(y_train))) | ||
156 | + print(" Number of training class A: {}".format(y_train.count('A'))) | ||
157 | + print(" Number of training class I: {}".format(y_train.count('I'))) | ||
158 | + print(" Shape of training matrix: {}".format(X_train.shape)) | ||
159 | + | ||
160 | + print("Reading testing data and true classes...") | ||
161 | + X_test = None | ||
162 | + if args.saveData: | ||
163 | + y_test = [] | ||
164 | + testingData = [] | ||
165 | + with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \ | ||
166 | + as iFile: | ||
167 | + for line in iFile: | ||
168 | + line = line.strip('\r\n') | ||
169 | + listLine = line.split(',') | ||
170 | + testingData.append(listLine[1:]) | ||
171 | + X_test = csr_matrix(testingData, dtype='double') | ||
172 | + with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \ | ||
173 | + as iFile: | ||
174 | + for line in iFile: | ||
175 | + line = line.strip('\r\n') | ||
176 | + y_test.append(line) | ||
177 | + print(" Saving matrix and classes...") | ||
178 | + joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
179 | + joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
180 | + print(" Done!") | ||
181 | + else: | ||
182 | + print(" Loading matrix and classes...") | ||
183 | + X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
184 | + y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
185 | + print(" Done!") | ||
186 | + | ||
187 | + print(" Number of testing classes: {}".format(len(y_test))) | ||
188 | + print(" Number of testing class A: {}".format(y_test.count('A'))) | ||
189 | + print(" Number of testing class I: {}".format(y_test.count('I'))) | ||
190 | + print(" Shape of testing matrix: {}".format(X_test.shape)) | ||
191 | + | ||
192 | + # Feature selection and dimensional reduction | ||
193 | + if args.reduction is not None: | ||
194 | + print('Performing dimensionality reduction or feature selection...', args.reduction) | ||
195 | + if args.reduction == 'SVD200': | ||
196 | + reduc = TruncatedSVD(n_components=200, random_state=42) | ||
197 | + X_train = reduc.fit_transform(X_train) | ||
198 | + if args.reduction == 'SVD300': | ||
199 | + reduc = TruncatedSVD(n_components=300, random_state=42) | ||
200 | + X_train = reduc.fit_transform(X_train) | ||
201 | + elif args.reduction == 'CHI250': | ||
202 | + reduc = SelectKBest(chi2, k=50) | ||
203 | + X_train = reduc.fit_transform(X_train, y_train) | ||
204 | + elif args.reduction == 'CHI2100': | ||
205 | + reduc = SelectKBest(chi2, k=100) | ||
206 | + X_train = reduc.fit_transform(X_train, y_train) | ||
207 | + print(" Done!") | ||
208 | + print(' New shape of training matrix: ', X_train.shape) | ||
209 | + | ||
210 | + if args.imbalanced != None: | ||
211 | + t1 = time() | ||
212 | + # Combination over and under sampling | ||
213 | + jobs = 15 | ||
214 | + if args.imbalanced == "SMOTE+ENN": | ||
215 | + sm = SMOTEENN(random_state=42, n_jobs=jobs) | ||
216 | + elif args.imbalanced == "SMOTE+Tomek": | ||
217 | + sm = SMOTETomek(random_state=42, n_jobs=jobs) | ||
218 | + # Over sampling | ||
219 | + elif args.imbalanced == "SMOTE_reg": | ||
220 | + sm = SMOTE(random_state=42, n_jobs=jobs) | ||
221 | + elif args.imbalanced == "SMOTE_svm": | ||
222 | + sm = SMOTE(random_state=42, n_jobs=jobs, kind='svm') | ||
223 | + elif args.imbalanced == "SMOTE_b1": | ||
224 | + sm = SMOTE(random_state=42, n_jobs=jobs, kind='borderline1') | ||
225 | + elif args.imbalanced == "SMOTE_b2": | ||
226 | + sm = SMOTE(random_state=42, n_jobs=jobs, kind='borderline2') | ||
227 | + elif args.imbalanced == "RandomOS": | ||
228 | + sm = RandomOverSampler(random_state=42) | ||
229 | + # Under sampling | ||
230 | + elif args.imbalanced == "ENN": | ||
231 | + sm = EditedNearestNeighbours(random_state=42, n_jobs=jobs) | ||
232 | + elif args.imbalanced == "Tomek": | ||
233 | + sm = TomekLinks(random_state=42, n_jobs=jobs) | ||
234 | + elif args.imbalanced == "OSS": | ||
235 | + sm = OneSidedSelection(random_state=42, n_jobs=jobs) | ||
236 | + elif args.imbalanced == "RandomUS": | ||
237 | + sm = RandomUnderSampler(random_state=42) | ||
238 | + elif args.imbalanced == "NCR": | ||
239 | + sm = NeighbourhoodCleaningRule(random_state=42, n_jobs=jobs) | ||
240 | + elif args.imbalanced == "IHT": | ||
241 | + sm = InstanceHardnessThreshold(random_state=42, n_jobs=jobs) | ||
242 | + elif args.imbalanced == "ClusterC": | ||
243 | + sm = ClusterCentroids(random_state=42, n_jobs=jobs) | ||
244 | + elif args.imbalanced == "Balanced": | ||
245 | + sm = BalanceCascade(random_state=42) | ||
246 | + elif args.imbalanced == "Easy": | ||
247 | + sm = EasyEnsemble(random_state=42, n_subsets=3) | ||
248 | + elif args.imbalanced == "ADASYN": | ||
249 | + sm = ADASYN(random_state=42, n_jobs=jobs) | ||
250 | + | ||
251 | + # Apply transformation | ||
252 | + X_train, y_train = sm.fit_sample(X_train, y_train) | ||
253 | + | ||
254 | + print(" After transformtion with {}".format(args.imbalanced)) | ||
255 | + print(" Number of testing classes: {}".format(len(y_test))) | ||
256 | + print(" Number of testing class A: {}".format(y_test.count('A'))) | ||
257 | + print(" Number of testing class I: {}".format(y_test.count('I'))) | ||
258 | + print(" Shape of testing matrix: {}".format(X_test.shape)) | ||
259 | + print(" Data transformation done in : %fs" % (time() - t1)) | ||
260 | + | ||
261 | + jobs = -1 | ||
262 | + paramGrid = [] | ||
263 | + nIter = 20 | ||
264 | + crossV = 10 | ||
265 | + print("Defining randomized grid search...") | ||
266 | + if args.classifier == 'SVM': | ||
267 | + # SVM | ||
268 | + classifier = SVC() | ||
269 | + if args.kernel == 'rbf': | ||
270 | + paramGrid = {'C': scipy.stats.expon(scale=100), | ||
271 | + 'gamma': scipy.stats.expon(scale=.1), | ||
272 | + 'kernel': ['rbf'], 'class_weight': ['balanced', None]} | ||
273 | + elif args.kernel == 'linear': | ||
274 | + paramGrid = {'C': scipy.stats.expon(scale=100), | ||
275 | + 'kernel': ['linear'], | ||
276 | + 'class_weight': ['balanced', None]} | ||
277 | + elif args.kernel == 'poly': | ||
278 | + paramGrid = {'C': scipy.stats.expon(scale=100), | ||
279 | + 'gamma': scipy.stats.expon(scale=.1), 'degree': [2, 3], | ||
280 | + 'kernel': ['poly'], 'class_weight': ['balanced', None]} | ||
281 | + myClassifier = model_selection.RandomizedSearchCV(classifier, | ||
282 | + paramGrid, n_iter=nIter, | ||
283 | + cv=crossV, n_jobs=jobs, verbose=3) | ||
284 | + elif args.classifier == 'BernoulliNB': | ||
285 | + # BernoulliNB | ||
286 | + classifier = BernoulliNB() | ||
287 | + paramGrid = {'alpha': scipy.stats.expon(scale=1.0)} | ||
288 | + myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=nIter, | ||
289 | + cv=crossV, n_jobs=jobs, verbose=3) | ||
290 | + # elif args.classifier == 'kNN': | ||
291 | + # # kNN | ||
292 | + # k_range = list(range(1, 7, 2)) | ||
293 | + # classifier = KNeighborsClassifier() | ||
294 | + # paramGrid = {'n_neighbors ': k_range} | ||
295 | + # myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=3, | ||
296 | + # cv=crossV, n_jobs=jobs, verbose=3) | ||
297 | + else: | ||
298 | + print("Bad classifier") | ||
299 | + exit() | ||
300 | + print(" Done!") | ||
301 | + | ||
302 | + print("Training...") | ||
303 | + myClassifier.fit(X_train, y_train) | ||
304 | + print(" Done!") | ||
305 | + | ||
306 | + print("Testing (prediction in new data)...") | ||
307 | + if args.reduction is not None: | ||
308 | + X_test = reduc.transform(X_test) | ||
309 | + y_pred = myClassifier.predict(X_test) | ||
310 | + best_parameters = myClassifier.best_estimator_.get_params() | ||
311 | + print(" Done!") | ||
312 | + | ||
313 | + print("Saving report...") | ||
314 | + with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile: | ||
315 | + oFile.write('********** EVALUATION REPORT **********\n') | ||
316 | + oFile.write('Reduction: {}\n'.format(args.reduction)) | ||
317 | + oFile.write('Classifier: {}\n'.format(args.classifier)) | ||
318 | + oFile.write('Kernel: {}\n'.format(args.kernel)) | ||
319 | + oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred))) | ||
320 | + oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted'))) | ||
321 | + oFile.write('Recall: {}\n'.format(recall_score(y_test, y_pred, average='weighted'))) | ||
322 | + oFile.write('F-score: {}\n'.format(f1_score(y_test, y_pred, average='weighted'))) | ||
323 | + oFile.write('Confusion matrix: \n') | ||
324 | + oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n') | ||
325 | + oFile.write('Classification report: \n') | ||
326 | + oFile.write(classification_report(y_test, y_pred) + '\n') | ||
327 | + oFile.write('Best parameters: \n') | ||
328 | + for param in sorted(best_parameters.keys()): | ||
329 | + oFile.write("\t%s: %r\n" % (param, best_parameters[param])) | ||
330 | + print(" Done!") | ||
331 | + | ||
332 | + print("Training and testing done in: %fs" % (time() - t0)) |
... | @@ -55,6 +55,7 @@ __author__ = 'CMendezC' | ... | @@ -55,6 +55,7 @@ __author__ = 'CMendezC' |
55 | # source activate python3 | 55 | # source activate python3 |
56 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-linear-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --kernel rbf --reduction SVD200 | 56 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-linear-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --kernel rbf --reduction SVD200 |
57 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile kNN-CHI2100-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile kNN-CHI2100.txt --classifier kNN --reduction CHI2100 | 57 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile kNN-CHI2100-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile kNN-CHI2100.txt --classifier kNN --reduction CHI2100 |
58 | +# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-rbf-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-rbf.txt --classifier SVM --kernel rbf | ||
58 | 59 | ||
59 | ########################################################### | 60 | ########################################################### |
60 | # MAIN PROGRAM # | 61 | # MAIN PROGRAM # | ... | ... |
-
Please register or login to post a comment