Showing
2 changed files
with
333 additions
and
0 deletions
| 1 | +# -*- encoding: utf-8 -*- | ||
| 2 | + | ||
| 3 | +import os | ||
| 4 | +from time import time | ||
| 5 | +import argparse | ||
| 6 | +from sklearn.naive_bayes import BernoulliNB | ||
| 7 | +from sklearn.svm import SVC | ||
| 8 | +from sklearn.neighbors import KNeighborsClassifier | ||
| 9 | +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \ | ||
| 10 | + classification_report | ||
| 11 | +from sklearn.externals import joblib | ||
| 12 | +from sklearn import model_selection | ||
| 13 | +from sklearn.feature_selection import SelectKBest, chi2 | ||
| 14 | +from sklearn.decomposition import TruncatedSVD | ||
| 15 | +from scipy.sparse import csr_matrix | ||
| 16 | +import scipy | ||
| 17 | +from imblearn.combine import SMOTEENN, SMOTETomek | ||
| 18 | +from imblearn.over_sampling import SMOTE, ADASYN, RandomOverSampler | ||
| 19 | +from imblearn.under_sampling import EditedNearestNeighbours, TomekLinks, \ | ||
| 20 | + OneSidedSelection, RandomUnderSampler, NeighbourhoodCleaningRule, \ | ||
| 21 | + InstanceHardnessThreshold, ClusterCentroids | ||
| 22 | +from imblearn.ensemble import EasyEnsemble, BalanceCascade | ||
| 23 | + | ||
| 24 | +__author__ = 'CMendezC' | ||
| 25 | + | ||
| 26 | +# Goal: training, crossvalidation and testing binding thrombin data set | ||
| 27 | + | ||
| 28 | +# Parameters: | ||
| 29 | +# 1) --inputPath Path to read input files. | ||
| 30 | +# 2) --inputTrainingData File to read training data. | ||
| 31 | +# 3) --inputTestingData File to read testing data. | ||
| 32 | +# 4) --inputTestingClasses File to read testing classes. | ||
| 33 | +# 5) --outputModelPath Path to place output model. | ||
| 34 | +# 6) --outputModelFile File to place output model. | ||
| 35 | +# 7) --outputReportPath Path to place evaluation report. | ||
| 36 | +# 8) --outputReportFile File to place evaluation report. | ||
| 37 | +# 9) --classifier Classifier: BernoulliNB, SVM, kNN. | ||
| 38 | +# 10) --saveData Save matrices | ||
| 39 | +# 11) --kernel Kernel | ||
| 40 | +# 12) --reduction Feature selection or dimensionality reduction | ||
| 41 | +# 13) --imbalanced Imbalanced method | ||
| 42 | + | ||
| 43 | +# Ouput: | ||
| 44 | +# 1) Classification model and evaluation report. | ||
| 45 | + | ||
| 46 | +# Execution: | ||
| 47 | + | ||
| 48 | +# python training-crossvalidation-testing-binding-thrombin.py | ||
| 49 | +# --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset | ||
| 50 | +# --inputTrainingData thrombin.data | ||
| 51 | +# --inputTestingData Thrombin.testset | ||
| 52 | +# --inputTestingClasses Thrombin.testset.class | ||
| 53 | +# --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models | ||
| 54 | +# --outputModelFile SVM-lineal-model.mod | ||
| 55 | +# --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports | ||
| 56 | +# --outputReportFile SVM-lineal.txt | ||
| 57 | +# --classifier SVM | ||
| 58 | +# --saveData | ||
| 59 | +# --kernel linear | ||
| 60 | +# --imbalanced RandomUS | ||
| 61 | + | ||
| 62 | +# source activate python3 | ||
| 63 | +# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-lineal.txt --classifier SVM --kernel linear --imbalanced RandomUS | ||
| 64 | + | ||
| 65 | +########################################################### | ||
| 66 | +# MAIN PROGRAM # | ||
| 67 | +########################################################### | ||
| 68 | + | ||
| 69 | +if __name__ == "__main__": | ||
| 70 | + # Parameter definition | ||
| 71 | + parser = argparse.ArgumentParser(description='Training validation Binding Thrombin Dataset.') | ||
| 72 | + parser.add_argument("--inputPath", dest="inputPath", | ||
| 73 | + help="Path to read input files", metavar="PATH") | ||
| 74 | + parser.add_argument("--inputTrainingData", dest="inputTrainingData", | ||
| 75 | + help="File to read training data", metavar="FILE") | ||
| 76 | + parser.add_argument("--inputTestingData", dest="inputTestingData", | ||
| 77 | + help="File to read testing data", metavar="FILE") | ||
| 78 | + parser.add_argument("--inputTestingClasses", dest="inputTestingClasses", | ||
| 79 | + help="File to read testing classes", metavar="FILE") | ||
| 80 | + parser.add_argument("--outputModelPath", dest="outputModelPath", | ||
| 81 | + help="Path to place output model", metavar="PATH") | ||
| 82 | + parser.add_argument("--outputModelFile", dest="outputModelFile", | ||
| 83 | + help="File to place output model", metavar="FILE") | ||
| 84 | + parser.add_argument("--outputReportPath", dest="outputReportPath", | ||
| 85 | + help="Path to place evaluation report", metavar="PATH") | ||
| 86 | + parser.add_argument("--outputReportFile", dest="outputReportFile", | ||
| 87 | + help="File to place evaluation report", metavar="FILE") | ||
| 88 | + parser.add_argument("--classifier", dest="classifier", | ||
| 89 | + help="Classifier", metavar="NAME", | ||
| 90 | + choices=('BernoulliNB', 'SVM', 'kNN'), default='SVM') | ||
| 91 | + parser.add_argument("--saveData", dest="saveData", action='store_true', | ||
| 92 | + help="Save matrices") | ||
| 93 | + parser.add_argument("--kernel", dest="kernel", | ||
| 94 | + help="Kernel SVM", metavar="NAME", | ||
| 95 | + choices=('linear', 'rbf', 'poly'), default='linear') | ||
| 96 | + parser.add_argument("--reduction", dest="reduction", | ||
| 97 | + help="Feature selection or dimensionality reduction", metavar="NAME", | ||
| 98 | + choices=('SVD200', 'SVD300', 'CHI250', 'CHI2100'), default=None) | ||
| 99 | + parser.add_argument("--imbalanced", dest="imbalanced", | ||
| 100 | + choices=('RandomUS', 'Tomek', 'NCR', | ||
| 101 | + 'IHT', 'RandomOS', 'ADASYN', 'SMOTE_reg', | ||
| 102 | + 'SMOTE_svm', 'SMOTE_b1', 'SMOTE_b2', 'OSS', | ||
| 103 | + 'SMOTE+ENN'), default=None, | ||
| 104 | + help="Undersampling: RandomUS, Tomek, Neighbourhood Cleanning Rule (NCR), " | ||
| 105 | + "Instance Hardess Threshold (IHT), One Sided Selection (OSS). " | ||
| 106 | + "Oversampling: RandomOS, ADACYN, SMOTE_reg, " | ||
| 107 | + "SMOTE_svm, SMOTE_b1, SMOTE_b2. Combine: " | ||
| 108 | + "SMOTE + ENN", metavar="TEXT") | ||
| 109 | + | ||
| 110 | + args = parser.parse_args() | ||
| 111 | + | ||
| 112 | + # Printing parameter values | ||
| 113 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
| 114 | + print("Path to read input files: " + str(args.inputPath)) | ||
| 115 | + print("File to read training data: " + str(args.inputTrainingData)) | ||
| 116 | + print("File to read testing data: " + str(args.inputTestingData)) | ||
| 117 | + print("File to read testing classes: " + str(args.inputTestingClasses)) | ||
| 118 | + print("Path to place output model: " + str(args.outputModelPath)) | ||
| 119 | + print("File to place output model: " + str(args.outputModelFile)) | ||
| 120 | + print("Path to place evaluation report: " + str(args.outputReportPath)) | ||
| 121 | + print("File to place evaluation report: " + str(args.outputReportFile)) | ||
| 122 | + print("Classifier: " + str(args.classifier)) | ||
| 123 | + print("Save matrices: " + str(args.saveData)) | ||
| 124 | + print("Kernel: " + str(args.kernel)) | ||
| 125 | + print("Reduction: " + str(args.reduction)) | ||
| 126 | + print("Imbalanced: " + str(args.imbalanced)) | ||
| 127 | + | ||
| 128 | + # Start time | ||
| 129 | + t0 = time() | ||
| 130 | + | ||
| 131 | + print("Reading training data and true classes...") | ||
| 132 | + X_train = None | ||
| 133 | + if args.saveData: | ||
| 134 | + y_train = [] | ||
| 135 | + trainingData = [] | ||
| 136 | + with open(os.path.join(args.inputPath, args.inputTrainingData), encoding='utf8', mode='r') \ | ||
| 137 | + as iFile: | ||
| 138 | + for line in iFile: | ||
| 139 | + line = line.strip('\r\n') | ||
| 140 | + listLine = line.split(',') | ||
| 141 | + y_train.append(listLine[0]) | ||
| 142 | + trainingData.append(listLine[1:]) | ||
| 143 | + # X_train = np.matrix(trainingData) | ||
| 144 | + X_train = csr_matrix(trainingData, dtype='double') | ||
| 145 | + print(" Saving matrix and classes...") | ||
| 146 | + joblib.dump(X_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb')) | ||
| 147 | + joblib.dump(y_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb')) | ||
| 148 | + print(" Done!") | ||
| 149 | + else: | ||
| 150 | + print(" Loading matrix and classes...") | ||
| 151 | + X_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb')) | ||
| 152 | + y_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb')) | ||
| 153 | + print(" Done!") | ||
| 154 | + | ||
| 155 | + print(" Number of training classes: {}".format(len(y_train))) | ||
| 156 | + print(" Number of training class A: {}".format(y_train.count('A'))) | ||
| 157 | + print(" Number of training class I: {}".format(y_train.count('I'))) | ||
| 158 | + print(" Shape of training matrix: {}".format(X_train.shape)) | ||
| 159 | + | ||
| 160 | + print("Reading testing data and true classes...") | ||
| 161 | + X_test = None | ||
| 162 | + if args.saveData: | ||
| 163 | + y_test = [] | ||
| 164 | + testingData = [] | ||
| 165 | + with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \ | ||
| 166 | + as iFile: | ||
| 167 | + for line in iFile: | ||
| 168 | + line = line.strip('\r\n') | ||
| 169 | + listLine = line.split(',') | ||
| 170 | + testingData.append(listLine[1:]) | ||
| 171 | + X_test = csr_matrix(testingData, dtype='double') | ||
| 172 | + with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \ | ||
| 173 | + as iFile: | ||
| 174 | + for line in iFile: | ||
| 175 | + line = line.strip('\r\n') | ||
| 176 | + y_test.append(line) | ||
| 177 | + print(" Saving matrix and classes...") | ||
| 178 | + joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
| 179 | + joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
| 180 | + print(" Done!") | ||
| 181 | + else: | ||
| 182 | + print(" Loading matrix and classes...") | ||
| 183 | + X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
| 184 | + y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
| 185 | + print(" Done!") | ||
| 186 | + | ||
| 187 | + print(" Number of testing classes: {}".format(len(y_test))) | ||
| 188 | + print(" Number of testing class A: {}".format(y_test.count('A'))) | ||
| 189 | + print(" Number of testing class I: {}".format(y_test.count('I'))) | ||
| 190 | + print(" Shape of testing matrix: {}".format(X_test.shape)) | ||
| 191 | + | ||
| 192 | + # Feature selection and dimensional reduction | ||
| 193 | + if args.reduction is not None: | ||
| 194 | + print('Performing dimensionality reduction or feature selection...', args.reduction) | ||
| 195 | + if args.reduction == 'SVD200': | ||
| 196 | + reduc = TruncatedSVD(n_components=200, random_state=42) | ||
| 197 | + X_train = reduc.fit_transform(X_train) | ||
| 198 | + if args.reduction == 'SVD300': | ||
| 199 | + reduc = TruncatedSVD(n_components=300, random_state=42) | ||
| 200 | + X_train = reduc.fit_transform(X_train) | ||
| 201 | + elif args.reduction == 'CHI250': | ||
| 202 | + reduc = SelectKBest(chi2, k=50) | ||
| 203 | + X_train = reduc.fit_transform(X_train, y_train) | ||
| 204 | + elif args.reduction == 'CHI2100': | ||
| 205 | + reduc = SelectKBest(chi2, k=100) | ||
| 206 | + X_train = reduc.fit_transform(X_train, y_train) | ||
| 207 | + print(" Done!") | ||
| 208 | + print(' New shape of training matrix: ', X_train.shape) | ||
| 209 | + | ||
| 210 | + if args.imbalanced != None: | ||
| 211 | + t1 = time() | ||
| 212 | + # Combination over and under sampling | ||
| 213 | + jobs = 15 | ||
| 214 | + if args.imbalanced == "SMOTE+ENN": | ||
| 215 | + sm = SMOTEENN(random_state=42, n_jobs=jobs) | ||
| 216 | + elif args.imbalanced == "SMOTE+Tomek": | ||
| 217 | + sm = SMOTETomek(random_state=42, n_jobs=jobs) | ||
| 218 | + # Over sampling | ||
| 219 | + elif args.imbalanced == "SMOTE_reg": | ||
| 220 | + sm = SMOTE(random_state=42, n_jobs=jobs) | ||
| 221 | + elif args.imbalanced == "SMOTE_svm": | ||
| 222 | + sm = SMOTE(random_state=42, n_jobs=jobs, kind='svm') | ||
| 223 | + elif args.imbalanced == "SMOTE_b1": | ||
| 224 | + sm = SMOTE(random_state=42, n_jobs=jobs, kind='borderline1') | ||
| 225 | + elif args.imbalanced == "SMOTE_b2": | ||
| 226 | + sm = SMOTE(random_state=42, n_jobs=jobs, kind='borderline2') | ||
| 227 | + elif args.imbalanced == "RandomOS": | ||
| 228 | + sm = RandomOverSampler(random_state=42) | ||
| 229 | + # Under sampling | ||
| 230 | + elif args.imbalanced == "ENN": | ||
| 231 | + sm = EditedNearestNeighbours(random_state=42, n_jobs=jobs) | ||
| 232 | + elif args.imbalanced == "Tomek": | ||
| 233 | + sm = TomekLinks(random_state=42, n_jobs=jobs) | ||
| 234 | + elif args.imbalanced == "OSS": | ||
| 235 | + sm = OneSidedSelection(random_state=42, n_jobs=jobs) | ||
| 236 | + elif args.imbalanced == "RandomUS": | ||
| 237 | + sm = RandomUnderSampler(random_state=42) | ||
| 238 | + elif args.imbalanced == "NCR": | ||
| 239 | + sm = NeighbourhoodCleaningRule(random_state=42, n_jobs=jobs) | ||
| 240 | + elif args.imbalanced == "IHT": | ||
| 241 | + sm = InstanceHardnessThreshold(random_state=42, n_jobs=jobs) | ||
| 242 | + elif args.imbalanced == "ClusterC": | ||
| 243 | + sm = ClusterCentroids(random_state=42, n_jobs=jobs) | ||
| 244 | + elif args.imbalanced == "Balanced": | ||
| 245 | + sm = BalanceCascade(random_state=42) | ||
| 246 | + elif args.imbalanced == "Easy": | ||
| 247 | + sm = EasyEnsemble(random_state=42, n_subsets=3) | ||
| 248 | + elif args.imbalanced == "ADASYN": | ||
| 249 | + sm = ADASYN(random_state=42, n_jobs=jobs) | ||
| 250 | + | ||
| 251 | + # Apply transformation | ||
| 252 | + X_train, y_train = sm.fit_sample(X_train, y_train) | ||
| 253 | + | ||
| 254 | + print(" After transformtion with {}".format(args.imbalanced)) | ||
| 255 | + print(" Number of testing classes: {}".format(len(y_test))) | ||
| 256 | + print(" Number of testing class A: {}".format(y_test.count('A'))) | ||
| 257 | + print(" Number of testing class I: {}".format(y_test.count('I'))) | ||
| 258 | + print(" Shape of testing matrix: {}".format(X_test.shape)) | ||
| 259 | + print(" Data transformation done in : %fs" % (time() - t1)) | ||
| 260 | + | ||
| 261 | + jobs = -1 | ||
| 262 | + paramGrid = [] | ||
| 263 | + nIter = 20 | ||
| 264 | + crossV = 10 | ||
| 265 | + print("Defining randomized grid search...") | ||
| 266 | + if args.classifier == 'SVM': | ||
| 267 | + # SVM | ||
| 268 | + classifier = SVC() | ||
| 269 | + if args.kernel == 'rbf': | ||
| 270 | + paramGrid = {'C': scipy.stats.expon(scale=100), | ||
| 271 | + 'gamma': scipy.stats.expon(scale=.1), | ||
| 272 | + 'kernel': ['rbf'], 'class_weight': ['balanced', None]} | ||
| 273 | + elif args.kernel == 'linear': | ||
| 274 | + paramGrid = {'C': scipy.stats.expon(scale=100), | ||
| 275 | + 'kernel': ['linear'], | ||
| 276 | + 'class_weight': ['balanced', None]} | ||
| 277 | + elif args.kernel == 'poly': | ||
| 278 | + paramGrid = {'C': scipy.stats.expon(scale=100), | ||
| 279 | + 'gamma': scipy.stats.expon(scale=.1), 'degree': [2, 3], | ||
| 280 | + 'kernel': ['poly'], 'class_weight': ['balanced', None]} | ||
| 281 | + myClassifier = model_selection.RandomizedSearchCV(classifier, | ||
| 282 | + paramGrid, n_iter=nIter, | ||
| 283 | + cv=crossV, n_jobs=jobs, verbose=3) | ||
| 284 | + elif args.classifier == 'BernoulliNB': | ||
| 285 | + # BernoulliNB | ||
| 286 | + classifier = BernoulliNB() | ||
| 287 | + paramGrid = {'alpha': scipy.stats.expon(scale=1.0)} | ||
| 288 | + myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=nIter, | ||
| 289 | + cv=crossV, n_jobs=jobs, verbose=3) | ||
| 290 | + # elif args.classifier == 'kNN': | ||
| 291 | + # # kNN | ||
| 292 | + # k_range = list(range(1, 7, 2)) | ||
| 293 | + # classifier = KNeighborsClassifier() | ||
| 294 | + # paramGrid = {'n_neighbors ': k_range} | ||
| 295 | + # myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=3, | ||
| 296 | + # cv=crossV, n_jobs=jobs, verbose=3) | ||
| 297 | + else: | ||
| 298 | + print("Bad classifier") | ||
| 299 | + exit() | ||
| 300 | + print(" Done!") | ||
| 301 | + | ||
| 302 | + print("Training...") | ||
| 303 | + myClassifier.fit(X_train, y_train) | ||
| 304 | + print(" Done!") | ||
| 305 | + | ||
| 306 | + print("Testing (prediction in new data)...") | ||
| 307 | + if args.reduction is not None: | ||
| 308 | + X_test = reduc.transform(X_test) | ||
| 309 | + y_pred = myClassifier.predict(X_test) | ||
| 310 | + best_parameters = myClassifier.best_estimator_.get_params() | ||
| 311 | + print(" Done!") | ||
| 312 | + | ||
| 313 | + print("Saving report...") | ||
| 314 | + with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile: | ||
| 315 | + oFile.write('********** EVALUATION REPORT **********\n') | ||
| 316 | + oFile.write('Reduction: {}\n'.format(args.reduction)) | ||
| 317 | + oFile.write('Classifier: {}\n'.format(args.classifier)) | ||
| 318 | + oFile.write('Kernel: {}\n'.format(args.kernel)) | ||
| 319 | + oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred))) | ||
| 320 | + oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted'))) | ||
| 321 | + oFile.write('Recall: {}\n'.format(recall_score(y_test, y_pred, average='weighted'))) | ||
| 322 | + oFile.write('F-score: {}\n'.format(f1_score(y_test, y_pred, average='weighted'))) | ||
| 323 | + oFile.write('Confusion matrix: \n') | ||
| 324 | + oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n') | ||
| 325 | + oFile.write('Classification report: \n') | ||
| 326 | + oFile.write(classification_report(y_test, y_pred) + '\n') | ||
| 327 | + oFile.write('Best parameters: \n') | ||
| 328 | + for param in sorted(best_parameters.keys()): | ||
| 329 | + oFile.write("\t%s: %r\n" % (param, best_parameters[param])) | ||
| 330 | + print(" Done!") | ||
| 331 | + | ||
| 332 | + print("Training and testing done in: %fs" % (time() - t0)) |
| ... | @@ -55,6 +55,7 @@ __author__ = 'CMendezC' | ... | @@ -55,6 +55,7 @@ __author__ = 'CMendezC' |
| 55 | # source activate python3 | 55 | # source activate python3 |
| 56 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-linear-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --kernel rbf --reduction SVD200 | 56 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-linear-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --kernel rbf --reduction SVD200 |
| 57 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile kNN-CHI2100-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile kNN-CHI2100.txt --classifier kNN --reduction CHI2100 | 57 | # python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile kNN-CHI2100-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile kNN-CHI2100.txt --classifier kNN --reduction CHI2100 |
| 58 | +# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-rbf-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-rbf.txt --classifier SVM --kernel rbf | ||
| 58 | 59 | ||
| 59 | ########################################################### | 60 | ########################################################### |
| 60 | # MAIN PROGRAM # | 61 | # MAIN PROGRAM # | ... | ... |
-
Please register or login to post a comment