Carlos-Francisco Méndez-Cruz

Training, crossvalidation and testing dataset

# -*- encoding: utf-8 -*-
import os
from time import time
import argparse
from sklearn.naive_bayes import BernoulliNB
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \
classification_report
from sklearn.externals import joblib
from sklearn import model_selection
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.decomposition import TruncatedSVD
from scipy.sparse import csr_matrix
import scipy
from imblearn.combine import SMOTEENN, SMOTETomek
from imblearn.over_sampling import SMOTE, ADASYN, RandomOverSampler
from imblearn.under_sampling import EditedNearestNeighbours, TomekLinks, \
OneSidedSelection, RandomUnderSampler, NeighbourhoodCleaningRule, \
InstanceHardnessThreshold, ClusterCentroids
from imblearn.ensemble import EasyEnsemble, BalanceCascade
__author__ = 'CMendezC'
# Goal: training, crossvalidation and testing binding thrombin data set
# Parameters:
# 1) --inputPath Path to read input files.
# 2) --inputTrainingData File to read training data.
# 3) --inputTestingData File to read testing data.
# 4) --inputTestingClasses File to read testing classes.
# 5) --outputModelPath Path to place output model.
# 6) --outputModelFile File to place output model.
# 7) --outputReportPath Path to place evaluation report.
# 8) --outputReportFile File to place evaluation report.
# 9) --classifier Classifier: BernoulliNB, SVM, kNN.
# 10) --saveData Save matrices
# 11) --kernel Kernel
# 12) --reduction Feature selection or dimensionality reduction
# 13) --imbalanced Imbalanced method
# Ouput:
# 1) Classification model and evaluation report.
# Execution:
# python training-crossvalidation-testing-binding-thrombin.py
# --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset
# --inputTrainingData thrombin.data
# --inputTestingData Thrombin.testset
# --inputTestingClasses Thrombin.testset.class
# --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models
# --outputModelFile SVM-lineal-model.mod
# --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports
# --outputReportFile SVM-lineal.txt
# --classifier SVM
# --saveData
# --kernel linear
# --imbalanced RandomUS
# source activate python3
# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-lineal.txt --classifier SVM --kernel linear --imbalanced RandomUS
###########################################################
# MAIN PROGRAM #
###########################################################
if __name__ == "__main__":
# Parameter definition
parser = argparse.ArgumentParser(description='Training validation Binding Thrombin Dataset.')
parser.add_argument("--inputPath", dest="inputPath",
help="Path to read input files", metavar="PATH")
parser.add_argument("--inputTrainingData", dest="inputTrainingData",
help="File to read training data", metavar="FILE")
parser.add_argument("--inputTestingData", dest="inputTestingData",
help="File to read testing data", metavar="FILE")
parser.add_argument("--inputTestingClasses", dest="inputTestingClasses",
help="File to read testing classes", metavar="FILE")
parser.add_argument("--outputModelPath", dest="outputModelPath",
help="Path to place output model", metavar="PATH")
parser.add_argument("--outputModelFile", dest="outputModelFile",
help="File to place output model", metavar="FILE")
parser.add_argument("--outputReportPath", dest="outputReportPath",
help="Path to place evaluation report", metavar="PATH")
parser.add_argument("--outputReportFile", dest="outputReportFile",
help="File to place evaluation report", metavar="FILE")
parser.add_argument("--classifier", dest="classifier",
help="Classifier", metavar="NAME",
choices=('BernoulliNB', 'SVM', 'kNN'), default='SVM')
parser.add_argument("--saveData", dest="saveData", action='store_true',
help="Save matrices")
parser.add_argument("--kernel", dest="kernel",
help="Kernel SVM", metavar="NAME",
choices=('linear', 'rbf', 'poly'), default='linear')
parser.add_argument("--reduction", dest="reduction",
help="Feature selection or dimensionality reduction", metavar="NAME",
choices=('SVD200', 'SVD300', 'CHI250', 'CHI2100'), default=None)
parser.add_argument("--imbalanced", dest="imbalanced",
choices=('RandomUS', 'Tomek', 'NCR',
'IHT', 'RandomOS', 'ADASYN', 'SMOTE_reg',
'SMOTE_svm', 'SMOTE_b1', 'SMOTE_b2', 'OSS',
'SMOTE+ENN'), default=None,
help="Undersampling: RandomUS, Tomek, Neighbourhood Cleanning Rule (NCR), "
"Instance Hardess Threshold (IHT), One Sided Selection (OSS). "
"Oversampling: RandomOS, ADACYN, SMOTE_reg, "
"SMOTE_svm, SMOTE_b1, SMOTE_b2. Combine: "
"SMOTE + ENN", metavar="TEXT")
args = parser.parse_args()
# Printing parameter values
print('-------------------------------- PARAMETERS --------------------------------')
print("Path to read input files: " + str(args.inputPath))
print("File to read training data: " + str(args.inputTrainingData))
print("File to read testing data: " + str(args.inputTestingData))
print("File to read testing classes: " + str(args.inputTestingClasses))
print("Path to place output model: " + str(args.outputModelPath))
print("File to place output model: " + str(args.outputModelFile))
print("Path to place evaluation report: " + str(args.outputReportPath))
print("File to place evaluation report: " + str(args.outputReportFile))
print("Classifier: " + str(args.classifier))
print("Save matrices: " + str(args.saveData))
print("Kernel: " + str(args.kernel))
print("Reduction: " + str(args.reduction))
print("Imbalanced: " + str(args.imbalanced))
# Start time
t0 = time()
print("Reading training data and true classes...")
X_train = None
if args.saveData:
y_train = []
trainingData = []
with open(os.path.join(args.inputPath, args.inputTrainingData), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
listLine = line.split(',')
y_train.append(listLine[0])
trainingData.append(listLine[1:])
# X_train = np.matrix(trainingData)
X_train = csr_matrix(trainingData, dtype='double')
print(" Saving matrix and classes...")
joblib.dump(X_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
joblib.dump(y_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
print(" Done!")
else:
print(" Loading matrix and classes...")
X_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
y_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
print(" Done!")
print(" Number of training classes: {}".format(len(y_train)))
print(" Number of training class A: {}".format(y_train.count('A')))
print(" Number of training class I: {}".format(y_train.count('I')))
print(" Shape of training matrix: {}".format(X_train.shape))
print("Reading testing data and true classes...")
X_test = None
if args.saveData:
y_test = []
testingData = []
with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
listLine = line.split(',')
testingData.append(listLine[1:])
X_test = csr_matrix(testingData, dtype='double')
with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
y_test.append(line)
print(" Saving matrix and classes...")
joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
print(" Done!")
else:
print(" Loading matrix and classes...")
X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
print(" Done!")
print(" Number of testing classes: {}".format(len(y_test)))
print(" Number of testing class A: {}".format(y_test.count('A')))
print(" Number of testing class I: {}".format(y_test.count('I')))
print(" Shape of testing matrix: {}".format(X_test.shape))
# Feature selection and dimensional reduction
if args.reduction is not None:
print('Performing dimensionality reduction or feature selection...', args.reduction)
if args.reduction == 'SVD200':
reduc = TruncatedSVD(n_components=200, random_state=42)
X_train = reduc.fit_transform(X_train)
if args.reduction == 'SVD300':
reduc = TruncatedSVD(n_components=300, random_state=42)
X_train = reduc.fit_transform(X_train)
elif args.reduction == 'CHI250':
reduc = SelectKBest(chi2, k=50)
X_train = reduc.fit_transform(X_train, y_train)
elif args.reduction == 'CHI2100':
reduc = SelectKBest(chi2, k=100)
X_train = reduc.fit_transform(X_train, y_train)
print(" Done!")
print(' New shape of training matrix: ', X_train.shape)
if args.imbalanced != None:
t1 = time()
# Combination over and under sampling
jobs = 15
if args.imbalanced == "SMOTE+ENN":
sm = SMOTEENN(random_state=42, n_jobs=jobs)
elif args.imbalanced == "SMOTE+Tomek":
sm = SMOTETomek(random_state=42, n_jobs=jobs)
# Over sampling
elif args.imbalanced == "SMOTE_reg":
sm = SMOTE(random_state=42, n_jobs=jobs)
elif args.imbalanced == "SMOTE_svm":
sm = SMOTE(random_state=42, n_jobs=jobs, kind='svm')
elif args.imbalanced == "SMOTE_b1":
sm = SMOTE(random_state=42, n_jobs=jobs, kind='borderline1')
elif args.imbalanced == "SMOTE_b2":
sm = SMOTE(random_state=42, n_jobs=jobs, kind='borderline2')
elif args.imbalanced == "RandomOS":
sm = RandomOverSampler(random_state=42)
# Under sampling
elif args.imbalanced == "ENN":
sm = EditedNearestNeighbours(random_state=42, n_jobs=jobs)
elif args.imbalanced == "Tomek":
sm = TomekLinks(random_state=42, n_jobs=jobs)
elif args.imbalanced == "OSS":
sm = OneSidedSelection(random_state=42, n_jobs=jobs)
elif args.imbalanced == "RandomUS":
sm = RandomUnderSampler(random_state=42)
elif args.imbalanced == "NCR":
sm = NeighbourhoodCleaningRule(random_state=42, n_jobs=jobs)
elif args.imbalanced == "IHT":
sm = InstanceHardnessThreshold(random_state=42, n_jobs=jobs)
elif args.imbalanced == "ClusterC":
sm = ClusterCentroids(random_state=42, n_jobs=jobs)
elif args.imbalanced == "Balanced":
sm = BalanceCascade(random_state=42)
elif args.imbalanced == "Easy":
sm = EasyEnsemble(random_state=42, n_subsets=3)
elif args.imbalanced == "ADASYN":
sm = ADASYN(random_state=42, n_jobs=jobs)
# Apply transformation
X_train, y_train = sm.fit_sample(X_train, y_train)
print(" After transformtion with {}".format(args.imbalanced))
print(" Number of testing classes: {}".format(len(y_test)))
print(" Number of testing class A: {}".format(y_test.count('A')))
print(" Number of testing class I: {}".format(y_test.count('I')))
print(" Shape of testing matrix: {}".format(X_test.shape))
print(" Data transformation done in : %fs" % (time() - t1))
jobs = -1
paramGrid = []
nIter = 20
crossV = 10
print("Defining randomized grid search...")
if args.classifier == 'SVM':
# SVM
classifier = SVC()
if args.kernel == 'rbf':
paramGrid = {'C': scipy.stats.expon(scale=100),
'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight': ['balanced', None]}
elif args.kernel == 'linear':
paramGrid = {'C': scipy.stats.expon(scale=100),
'kernel': ['linear'],
'class_weight': ['balanced', None]}
elif args.kernel == 'poly':
paramGrid = {'C': scipy.stats.expon(scale=100),
'gamma': scipy.stats.expon(scale=.1), 'degree': [2, 3],
'kernel': ['poly'], 'class_weight': ['balanced', None]}
myClassifier = model_selection.RandomizedSearchCV(classifier,
paramGrid, n_iter=nIter,
cv=crossV, n_jobs=jobs, verbose=3)
elif args.classifier == 'BernoulliNB':
# BernoulliNB
classifier = BernoulliNB()
paramGrid = {'alpha': scipy.stats.expon(scale=1.0)}
myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=nIter,
cv=crossV, n_jobs=jobs, verbose=3)
# elif args.classifier == 'kNN':
# # kNN
# k_range = list(range(1, 7, 2))
# classifier = KNeighborsClassifier()
# paramGrid = {'n_neighbors ': k_range}
# myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=3,
# cv=crossV, n_jobs=jobs, verbose=3)
else:
print("Bad classifier")
exit()
print(" Done!")
print("Training...")
myClassifier.fit(X_train, y_train)
print(" Done!")
print("Testing (prediction in new data)...")
if args.reduction is not None:
X_test = reduc.transform(X_test)
y_pred = myClassifier.predict(X_test)
best_parameters = myClassifier.best_estimator_.get_params()
print(" Done!")
print("Saving report...")
with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile:
oFile.write('********** EVALUATION REPORT **********\n')
oFile.write('Reduction: {}\n'.format(args.reduction))
oFile.write('Classifier: {}\n'.format(args.classifier))
oFile.write('Kernel: {}\n'.format(args.kernel))
oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred)))
oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted')))
oFile.write('Recall: {}\n'.format(recall_score(y_test, y_pred, average='weighted')))
oFile.write('F-score: {}\n'.format(f1_score(y_test, y_pred, average='weighted')))
oFile.write('Confusion matrix: \n')
oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n')
oFile.write('Classification report: \n')
oFile.write(classification_report(y_test, y_pred) + '\n')
oFile.write('Best parameters: \n')
for param in sorted(best_parameters.keys()):
oFile.write("\t%s: %r\n" % (param, best_parameters[param]))
print(" Done!")
print("Training and testing done in: %fs" % (time() - t0))
......@@ -55,6 +55,7 @@ __author__ = 'CMendezC'
# source activate python3
# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-linear-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --kernel rbf --reduction SVD200
# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile kNN-CHI2100-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile kNN-CHI2100.txt --classifier kNN --reduction CHI2100
# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-rbf-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-rbf.txt --classifier SVM --kernel rbf
###########################################################
# MAIN PROGRAM #
......