Showing
1 changed file
with
241 additions
and
0 deletions
clasificacion-automatica/binding-thrombin-dataset/imb-training-testing-binding-thrombin.py
0 → 100644
1 | +# -*- encoding: utf-8 -*- | ||
2 | + | ||
3 | +import os | ||
4 | +from time import time | ||
5 | +import argparse | ||
6 | +from sklearn.naive_bayes import BernoulliNB | ||
7 | +from sklearn.svm import SVC | ||
8 | +from sklearn.neighbors import KNeighborsClassifier | ||
9 | +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \ | ||
10 | + classification_report | ||
11 | +from sklearn.externals import joblib | ||
12 | +from sklearn import model_selection | ||
13 | +from scipy.sparse import csr_matrix | ||
14 | +import scipy | ||
15 | +from imblearn.under_sampling import RandomUnderSampler | ||
16 | +from imblearn.over_sampling import RandomOverSampler | ||
17 | + | ||
18 | +__author__ = 'CMendezC' | ||
19 | + | ||
20 | +# Goal: training, crossvalidation and testing binding thrombin data set | ||
21 | + | ||
22 | +# Parameters: | ||
23 | +# 1) --inputPath Path to read input files. | ||
24 | +# 2) --inputTrainingData File to read training data. | ||
25 | +# 3) --inputTestingData File to read testing data. | ||
26 | +# 4) --inputTestingClasses File to read testing classes. | ||
27 | +# 5) --outputModelPath Path to place output model. | ||
28 | +# 6) --outputModelFile File to place output model. | ||
29 | +# 7) --outputReportPath Path to place evaluation report. | ||
30 | +# 8) --outputReportFile File to place evaluation report. | ||
31 | +# 9) --classifier Classifier: BernoulliNB, SVM, kNN. | ||
32 | +# 10) --saveData Save matrices | ||
33 | +# 11) --kernel Kernel | ||
34 | +# 12) --imbalanced Imbalanced method | ||
35 | + | ||
36 | +# Ouput: | ||
37 | +# 1) Classification model and evaluation report. | ||
38 | + | ||
39 | +# Execution: | ||
40 | + | ||
41 | +# python training-crossvalidation-testing-binding-thrombin.py | ||
42 | +# --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset | ||
43 | +# --inputTrainingData thrombin.data | ||
44 | +# --inputTestingData Thrombin.testset | ||
45 | +# --inputTestingClasses Thrombin.testset.class | ||
46 | +# --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models | ||
47 | +# --outputModelFile SVM-lineal-model.mod | ||
48 | +# --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports | ||
49 | +# --outputReportFile SVM-lineal.txt | ||
50 | +# --classifier SVM | ||
51 | +# --saveData | ||
52 | +# --kernel linear | ||
53 | +# --imbalanced RandomUS | ||
54 | + | ||
55 | +# source activate python3 | ||
56 | +# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-lineal.txt --classifier SVM --kernel linear --imbalanced RandomUS | ||
57 | + | ||
58 | +########################################################### | ||
59 | +# MAIN PROGRAM # | ||
60 | +########################################################### | ||
61 | + | ||
62 | +if __name__ == "__main__": | ||
63 | + # Parameter definition | ||
64 | + parser = argparse.ArgumentParser(description='Training validation Binding Thrombin Dataset.') | ||
65 | + parser.add_argument("--inputPath", dest="inputPath", | ||
66 | + help="Path to read input files", metavar="PATH") | ||
67 | + parser.add_argument("--inputTrainingData", dest="inputTrainingData", | ||
68 | + help="File to read training data", metavar="FILE") | ||
69 | + parser.add_argument("--inputTestingData", dest="inputTestingData", | ||
70 | + help="File to read testing data", metavar="FILE") | ||
71 | + parser.add_argument("--inputTestingClasses", dest="inputTestingClasses", | ||
72 | + help="File to read testing classes", metavar="FILE") | ||
73 | + parser.add_argument("--outputModelPath", dest="outputModelPath", | ||
74 | + help="Path to place output model", metavar="PATH") | ||
75 | + parser.add_argument("--outputModelFile", dest="outputModelFile", | ||
76 | + help="File to place output model", metavar="FILE") | ||
77 | + parser.add_argument("--outputReportPath", dest="outputReportPath", | ||
78 | + help="Path to place evaluation report", metavar="PATH") | ||
79 | + parser.add_argument("--outputReportFile", dest="outputReportFile", | ||
80 | + help="File to place evaluation report", metavar="FILE") | ||
81 | + parser.add_argument("--classifier", dest="classifier", | ||
82 | + help="Classifier", metavar="NAME", | ||
83 | + choices=('BernoulliNB', 'SVM', 'kNN'), default='SVM') | ||
84 | + parser.add_argument("--saveData", dest="saveData", action='store_true', | ||
85 | + help="Save matrices") | ||
86 | + parser.add_argument("--kernel", dest="kernel", | ||
87 | + help="Kernel SVM", metavar="NAME", | ||
88 | + choices=('linear', 'rbf', 'poly'), default='linear') | ||
89 | + parser.add_argument("--imbalanced", dest="imbalanced", | ||
90 | + choices=('RandomUS', 'RandomOS'), default=None, | ||
91 | + help="Undersampling: RandomUS. Oversampling: RandomOS", metavar="TEXT") | ||
92 | + | ||
93 | + args = parser.parse_args() | ||
94 | + | ||
95 | + # Printing parameter values | ||
96 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
97 | + print("Path to read input files: " + str(args.inputPath)) | ||
98 | + print("File to read training data: " + str(args.inputTrainingData)) | ||
99 | + print("File to read testing data: " + str(args.inputTestingData)) | ||
100 | + print("File to read testing classes: " + str(args.inputTestingClasses)) | ||
101 | + print("Path to place output model: " + str(args.outputModelPath)) | ||
102 | + print("File to place output model: " + str(args.outputModelFile)) | ||
103 | + print("Path to place evaluation report: " + str(args.outputReportPath)) | ||
104 | + print("File to place evaluation report: " + str(args.outputReportFile)) | ||
105 | + print("Classifier: " + str(args.classifier)) | ||
106 | + print("Save matrices: " + str(args.saveData)) | ||
107 | + print("Kernel: " + str(args.kernel)) | ||
108 | + print("Imbalanced: " + str(args.imbalanced)) | ||
109 | + | ||
110 | + # Start time | ||
111 | + t0 = time() | ||
112 | + | ||
113 | + print("Reading training data and true classes...") | ||
114 | + X_train = None | ||
115 | + if args.saveData: | ||
116 | + y_train = [] | ||
117 | + trainingData = [] | ||
118 | + with open(os.path.join(args.inputPath, args.inputTrainingData), encoding='utf8', mode='r') \ | ||
119 | + as iFile: | ||
120 | + for line in iFile: | ||
121 | + line = line.strip('\r\n') | ||
122 | + listLine = line.split(',') | ||
123 | + y_train.append(listLine[0]) | ||
124 | + trainingData.append(listLine[1:]) | ||
125 | + # X_train = np.matrix(trainingData) | ||
126 | + X_train = csr_matrix(trainingData, dtype='double') | ||
127 | + print(" Saving matrix and classes...") | ||
128 | + joblib.dump(X_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb')) | ||
129 | + joblib.dump(y_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb')) | ||
130 | + print(" Done!") | ||
131 | + else: | ||
132 | + print(" Loading matrix and classes...") | ||
133 | + X_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb')) | ||
134 | + y_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb')) | ||
135 | + print(" Done!") | ||
136 | + | ||
137 | + print(" Number of training classes: {}".format(len(y_train))) | ||
138 | + print(" Number of training class A: {}".format(y_train.count('A'))) | ||
139 | + print(" Number of training class I: {}".format(y_train.count('I'))) | ||
140 | + print(" Shape of training matrix: {}".format(X_train.shape)) | ||
141 | + | ||
142 | + if args.imbalanced != None: | ||
143 | + t1 = time() | ||
144 | + # Combination over and under sampling | ||
145 | + jobs = 15 | ||
146 | + if args.imbalanced == "RandomOS": | ||
147 | + sm = RandomOverSampler(random_state=42) | ||
148 | + # Under sampling | ||
149 | + elif args.imbalanced == "RandomUS": | ||
150 | + sm = RandomUnderSampler(random_state=42) | ||
151 | + | ||
152 | + # Apply transformation | ||
153 | + X_train, y_train = sm.fit_sample(X_train, y_train) | ||
154 | + | ||
155 | + print(" After transformtion with {}".format(args.imbalanced)) | ||
156 | + print(" Number of training classes: {}".format(len(y_train))) | ||
157 | + print(" Number of training class A: {}".format(list(y_train).count('A'))) | ||
158 | + print(" Number of training class I: {}".format(list(y_train).count('I'))) | ||
159 | + print(" Shape of training matrix: {}".format(X_train.shape)) | ||
160 | + print(" Data transformation done in : %fs" % (time() - t1)) | ||
161 | + | ||
162 | + print("Reading testing data and true classes...") | ||
163 | + X_test = None | ||
164 | + if args.saveData: | ||
165 | + y_test = [] | ||
166 | + testingData = [] | ||
167 | + with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \ | ||
168 | + as iFile: | ||
169 | + for line in iFile: | ||
170 | + line = line.strip('\r\n') | ||
171 | + listLine = line.split(',') | ||
172 | + testingData.append(listLine[1:]) | ||
173 | + X_test = csr_matrix(testingData, dtype='double') | ||
174 | + with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \ | ||
175 | + as iFile: | ||
176 | + for line in iFile: | ||
177 | + line = line.strip('\r\n') | ||
178 | + y_test.append(line) | ||
179 | + print(" Saving matrix and classes...") | ||
180 | + joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
181 | + joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
182 | + print(" Done!") | ||
183 | + else: | ||
184 | + print(" Loading matrix and classes...") | ||
185 | + X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
186 | + y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
187 | + print(" Done!") | ||
188 | + | ||
189 | + print(" Number of testing classes: {}".format(len(y_test))) | ||
190 | + print(" Number of testing class A: {}".format(y_test.count('A'))) | ||
191 | + print(" Number of testing class I: {}".format(y_test.count('I'))) | ||
192 | + print(" Shape of testing matrix: {}".format(X_test.shape)) | ||
193 | + | ||
194 | + jobs = -1 | ||
195 | + paramGrid = [] | ||
196 | + nIter = 20 | ||
197 | + crossV = 10 | ||
198 | + print("Defining randomized grid search...") | ||
199 | + if args.classifier == 'SVM': | ||
200 | + # SVM | ||
201 | + classifier = SVC(args.kernel) | ||
202 | + elif args.classifier == 'BernoulliNB': | ||
203 | + # BernoulliNB | ||
204 | + classifier = BernoulliNB() | ||
205 | + elif args.classifier == 'kNN': | ||
206 | + # kNN | ||
207 | + k_range = list(range(1, 7, 2)) | ||
208 | + classifier = KNeighborsClassifier() | ||
209 | + else: | ||
210 | + print("Bad classifier") | ||
211 | + exit() | ||
212 | + print(" Done!") | ||
213 | + | ||
214 | + print("Training...") | ||
215 | + classifier.fit(X_train, y_train) | ||
216 | + print(" Done!") | ||
217 | + | ||
218 | + y_pred = classifier.predict(X_test) | ||
219 | + best_parameters = classifier.best_estimator_.get_params() | ||
220 | + print(" Done!") | ||
221 | + | ||
222 | + print("Saving report...") | ||
223 | + with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile: | ||
224 | + oFile.write('********** EVALUATION REPORT **********\n') | ||
225 | + oFile.write('Reduction: {}\n'.format(args.reduction)) | ||
226 | + oFile.write('Classifier: {}\n'.format(args.classifier)) | ||
227 | + oFile.write('Kernel: {}\n'.format(args.kernel)) | ||
228 | + oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred))) | ||
229 | + oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted'))) | ||
230 | + oFile.write('Recall: {}\n'.format(recall_score(y_test, y_pred, average='weighted'))) | ||
231 | + oFile.write('F-score: {}\n'.format(f1_score(y_test, y_pred, average='weighted'))) | ||
232 | + oFile.write('Confusion matrix: \n') | ||
233 | + oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n') | ||
234 | + oFile.write('Classification report: \n') | ||
235 | + oFile.write(classification_report(y_test, y_pred) + '\n') | ||
236 | + oFile.write('Best parameters: \n') | ||
237 | + for param in sorted(best_parameters.keys()): | ||
238 | + oFile.write("\t%s: %r\n" % (param, best_parameters[param])) | ||
239 | + print(" Done!") | ||
240 | + | ||
241 | + print("Training and testing done in: %fs" % (time() - t0)) |
-
Please register or login to post a comment