Carlos-Francisco Méndez-Cruz

Training, crossvalidation and testing dataset

# -*- encoding: utf-8 -*-
import os
from time import time
import argparse
from sklearn.naive_bayes import BernoulliNB
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \
classification_report
from sklearn.externals import joblib
from sklearn import model_selection
from scipy.sparse import csr_matrix
import scipy
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import RandomOverSampler
__author__ = 'CMendezC'
# Goal: training, crossvalidation and testing binding thrombin data set
# Parameters:
# 1) --inputPath Path to read input files.
# 2) --inputTrainingData File to read training data.
# 3) --inputTestingData File to read testing data.
# 4) --inputTestingClasses File to read testing classes.
# 5) --outputModelPath Path to place output model.
# 6) --outputModelFile File to place output model.
# 7) --outputReportPath Path to place evaluation report.
# 8) --outputReportFile File to place evaluation report.
# 9) --classifier Classifier: BernoulliNB, SVM, kNN.
# 10) --saveData Save matrices
# 11) --kernel Kernel
# 12) --imbalanced Imbalanced method
# Ouput:
# 1) Classification model and evaluation report.
# Execution:
# python training-crossvalidation-testing-binding-thrombin.py
# --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset
# --inputTrainingData thrombin.data
# --inputTestingData Thrombin.testset
# --inputTestingClasses Thrombin.testset.class
# --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models
# --outputModelFile SVM-lineal-model.mod
# --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports
# --outputReportFile SVM-lineal.txt
# --classifier SVM
# --saveData
# --kernel linear
# --imbalanced RandomUS
# source activate python3
# python training-crossvalidation-testing-binding-thrombin.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset --inputTrainingData thrombin.data --inputTestingData Thrombin.testset --inputTestingClasses Thrombin.testset.class --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/binding-thrombin-dataset/reports --outputReportFile SVM-lineal.txt --classifier SVM --kernel linear --imbalanced RandomUS
###########################################################
# MAIN PROGRAM #
###########################################################
if __name__ == "__main__":
# Parameter definition
parser = argparse.ArgumentParser(description='Training validation Binding Thrombin Dataset.')
parser.add_argument("--inputPath", dest="inputPath",
help="Path to read input files", metavar="PATH")
parser.add_argument("--inputTrainingData", dest="inputTrainingData",
help="File to read training data", metavar="FILE")
parser.add_argument("--inputTestingData", dest="inputTestingData",
help="File to read testing data", metavar="FILE")
parser.add_argument("--inputTestingClasses", dest="inputTestingClasses",
help="File to read testing classes", metavar="FILE")
parser.add_argument("--outputModelPath", dest="outputModelPath",
help="Path to place output model", metavar="PATH")
parser.add_argument("--outputModelFile", dest="outputModelFile",
help="File to place output model", metavar="FILE")
parser.add_argument("--outputReportPath", dest="outputReportPath",
help="Path to place evaluation report", metavar="PATH")
parser.add_argument("--outputReportFile", dest="outputReportFile",
help="File to place evaluation report", metavar="FILE")
parser.add_argument("--classifier", dest="classifier",
help="Classifier", metavar="NAME",
choices=('BernoulliNB', 'SVM', 'kNN'), default='SVM')
parser.add_argument("--saveData", dest="saveData", action='store_true',
help="Save matrices")
parser.add_argument("--kernel", dest="kernel",
help="Kernel SVM", metavar="NAME",
choices=('linear', 'rbf', 'poly'), default='linear')
parser.add_argument("--imbalanced", dest="imbalanced",
choices=('RandomUS', 'RandomOS'), default=None,
help="Undersampling: RandomUS. Oversampling: RandomOS", metavar="TEXT")
args = parser.parse_args()
# Printing parameter values
print('-------------------------------- PARAMETERS --------------------------------')
print("Path to read input files: " + str(args.inputPath))
print("File to read training data: " + str(args.inputTrainingData))
print("File to read testing data: " + str(args.inputTestingData))
print("File to read testing classes: " + str(args.inputTestingClasses))
print("Path to place output model: " + str(args.outputModelPath))
print("File to place output model: " + str(args.outputModelFile))
print("Path to place evaluation report: " + str(args.outputReportPath))
print("File to place evaluation report: " + str(args.outputReportFile))
print("Classifier: " + str(args.classifier))
print("Save matrices: " + str(args.saveData))
print("Kernel: " + str(args.kernel))
print("Imbalanced: " + str(args.imbalanced))
# Start time
t0 = time()
print("Reading training data and true classes...")
X_train = None
if args.saveData:
y_train = []
trainingData = []
with open(os.path.join(args.inputPath, args.inputTrainingData), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
listLine = line.split(',')
y_train.append(listLine[0])
trainingData.append(listLine[1:])
# X_train = np.matrix(trainingData)
X_train = csr_matrix(trainingData, dtype='double')
print(" Saving matrix and classes...")
joblib.dump(X_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
joblib.dump(y_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
print(" Done!")
else:
print(" Loading matrix and classes...")
X_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
y_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
print(" Done!")
print(" Number of training classes: {}".format(len(y_train)))
print(" Number of training class A: {}".format(y_train.count('A')))
print(" Number of training class I: {}".format(y_train.count('I')))
print(" Shape of training matrix: {}".format(X_train.shape))
if args.imbalanced != None:
t1 = time()
# Combination over and under sampling
jobs = 15
if args.imbalanced == "RandomOS":
sm = RandomOverSampler(random_state=42)
# Under sampling
elif args.imbalanced == "RandomUS":
sm = RandomUnderSampler(random_state=42)
# Apply transformation
X_train, y_train = sm.fit_sample(X_train, y_train)
print(" After transformtion with {}".format(args.imbalanced))
print(" Number of training classes: {}".format(len(y_train)))
print(" Number of training class A: {}".format(list(y_train).count('A')))
print(" Number of training class I: {}".format(list(y_train).count('I')))
print(" Shape of training matrix: {}".format(X_train.shape))
print(" Data transformation done in : %fs" % (time() - t1))
print("Reading testing data and true classes...")
X_test = None
if args.saveData:
y_test = []
testingData = []
with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
listLine = line.split(',')
testingData.append(listLine[1:])
X_test = csr_matrix(testingData, dtype='double')
with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
y_test.append(line)
print(" Saving matrix and classes...")
joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
print(" Done!")
else:
print(" Loading matrix and classes...")
X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
print(" Done!")
print(" Number of testing classes: {}".format(len(y_test)))
print(" Number of testing class A: {}".format(y_test.count('A')))
print(" Number of testing class I: {}".format(y_test.count('I')))
print(" Shape of testing matrix: {}".format(X_test.shape))
jobs = -1
paramGrid = []
nIter = 20
crossV = 10
print("Defining randomized grid search...")
if args.classifier == 'SVM':
# SVM
classifier = SVC(args.kernel)
elif args.classifier == 'BernoulliNB':
# BernoulliNB
classifier = BernoulliNB()
elif args.classifier == 'kNN':
# kNN
k_range = list(range(1, 7, 2))
classifier = KNeighborsClassifier()
else:
print("Bad classifier")
exit()
print(" Done!")
print("Training...")
classifier.fit(X_train, y_train)
print(" Done!")
y_pred = classifier.predict(X_test)
best_parameters = classifier.best_estimator_.get_params()
print(" Done!")
print("Saving report...")
with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile:
oFile.write('********** EVALUATION REPORT **********\n')
oFile.write('Reduction: {}\n'.format(args.reduction))
oFile.write('Classifier: {}\n'.format(args.classifier))
oFile.write('Kernel: {}\n'.format(args.kernel))
oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred)))
oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted')))
oFile.write('Recall: {}\n'.format(recall_score(y_test, y_pred, average='weighted')))
oFile.write('F-score: {}\n'.format(f1_score(y_test, y_pred, average='weighted')))
oFile.write('Confusion matrix: \n')
oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n')
oFile.write('Classification report: \n')
oFile.write(classification_report(y_test, y_pred) + '\n')
oFile.write('Best parameters: \n')
for param in sorted(best_parameters.keys()):
oFile.write("\t%s: %r\n" % (param, best_parameters[param]))
print(" Done!")
print("Training and testing done in: %fs" % (time() - t0))