Carlos-Francisco Méndez-Cruz

Classification binding thrombin data set

......@@ -199,15 +199,17 @@ if __name__ == "__main__":
classifier = SVC()
if args.kernel == 'rbf':
paramGrid = {'C': scipy.stats.expon(scale=100),
'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight': ['balanced', None]}
# 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'],
'class_weight': ['balanced', None]}
elif args.kernel == 'linear':
paramGrid = {'C': scipy.stats.expon(scale=100),
'kernel': ['linear'],
'class_weight': ['balanced', None]}
elif args.kernel == 'poly':
paramGrid = {'C': scipy.stats.expon(scale=100),
'gamma': scipy.stats.expon(scale=.1), 'degree': [2, 3],
# 'gamma': scipy.stats.expon(scale=.1),
'degree': [2, 3],
'kernel': ['poly'], 'class_weight': ['balanced', None]}
myClassifier = model_selection.RandomizedSearchCV(classifier,
paramGrid, n_iter=nIter,
......
......@@ -158,7 +158,7 @@ if __name__ == "__main__":
if args.classifier == "BernoulliNB":
classifier = BernoulliNB()
elif args.classifier == "SVM":
classifier = SVC()
classifier = SVC(kernel="linear")
elif args.classifier == "kNN":
classifier = KNeighborsClassifier()
else:
......