Carlos-Francisco Méndez-Cruz

Deep Learning Workshop

...@@ -104,7 +104,7 @@ if __name__ == "__main__": ...@@ -104,7 +104,7 @@ if __name__ == "__main__":
104 print("Media exon length: {}".format(total_exon_length/count_exon)) 104 print("Media exon length: {}".format(total_exon_length/count_exon))
105 print("Media utr length: {}".format(total_utr_length/count_utr)) 105 print("Media utr length: {}".format(total_utr_length/count_utr))
106 106
107 - #quit() 107 + quit()
108 108
109 if max_exon_length > max_utr_length: 109 if max_exon_length > max_utr_length:
110 max_length = max_exon_length 110 max_length = max_exon_length
...@@ -130,7 +130,7 @@ if __name__ == "__main__": ...@@ -130,7 +130,7 @@ if __name__ == "__main__":
130 integer_encoded = np.array(integer_encoded).reshape(-1, 1) 130 integer_encoded = np.array(integer_encoded).reshape(-1, 1)
131 # print("integer_encoded: {}".format(integer_encoded)) 131 # print("integer_encoded: {}".format(integer_encoded))
132 one_hot_encoded = one_hot_encoder.fit_transform(integer_encoded) 132 one_hot_encoded = one_hot_encoder.fit_transform(integer_encoded)
133 - print(" shape: {}".format(one_hot_encoded.toarray().shape)) 133 + # print(" shape: {}".format(one_hot_encoded.toarray().shape))
134 input_features.append(one_hot_encoded.toarray()) 134 input_features.append(one_hot_encoded.toarray())
135 135
136 # Print first sequence and one-hot-encoding 136 # Print first sequence and one-hot-encoding
......