Showing
5 changed files
with
179 additions
and
0 deletions
data/t10k-images-idx3-ubyte.gz
0 → 100644
1 | +<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> | ||
2 | +<html><head> | ||
3 | +<title>403 Forbidden</title> | ||
4 | +</head><body> | ||
5 | +<h1>Forbidden</h1> | ||
6 | +<p>You don't have permission to access this resource.</p> | ||
7 | +<hr> | ||
8 | +<address>Apache/2.4.18 (Ubuntu) Server at yann.lecun.com Port 443</address> | ||
9 | +</body></html> |
data/t10k-labels-idx1-ubyte.gz
0 → 100644
1 | +<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> | ||
2 | +<html><head> | ||
3 | +<title>403 Forbidden</title> | ||
4 | +</head><body> | ||
5 | +<h1>Forbidden</h1> | ||
6 | +<p>You don't have permission to access this resource.</p> | ||
7 | +<hr> | ||
8 | +<address>Apache/2.4.18 (Ubuntu) Server at yann.lecun.com Port 443</address> | ||
9 | +</body></html> |
data/train-images-idx3-ubyte.gz
0 → 100644
1 | +<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> | ||
2 | +<html><head> | ||
3 | +<title>403 Forbidden</title> | ||
4 | +</head><body> | ||
5 | +<h1>Forbidden</h1> | ||
6 | +<p>You don't have permission to access this resource.</p> | ||
7 | +<hr> | ||
8 | +<address>Apache/2.4.18 (Ubuntu) Server at yann.lecun.com Port 443</address> | ||
9 | +</body></html> |
data/train-labels-idx1-ubyte.gz
0 → 100644
1 | +<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> | ||
2 | +<html><head> | ||
3 | +<title>403 Forbidden</title> | ||
4 | +</head><body> | ||
5 | +<h1>Forbidden</h1> | ||
6 | +<p>You don't have permission to access this resource.</p> | ||
7 | +<hr> | ||
8 | +<address>Apache/2.4.18 (Ubuntu) Server at yann.lecun.com Port 443</address> | ||
9 | +</body></html> |
ejemplo-npu/mnist_npu_example.py
0 → 100644
1 | +from __future__ import print_function | ||
2 | +import argparse | ||
3 | +import torch | ||
4 | +import torch.npu | ||
5 | +import torch.nn as nn | ||
6 | +import torch.nn.functional as F | ||
7 | +import torch.optim as optim | ||
8 | +from torchvision import datasets, transforms | ||
9 | +from torch.optim.lr_scheduler import StepLR | ||
10 | + | ||
11 | + | ||
12 | +class Net(nn.Module): | ||
13 | + def __init__(self): | ||
14 | + super(Net, self).__init__() | ||
15 | + self.conv1 = nn.Conv2d(1, 32, 3, 1) | ||
16 | + self.conv2 = nn.Conv2d(32, 64, 3, 1) | ||
17 | + self.dropout1 = nn.Dropout(0.25) | ||
18 | + self.dropout2 = nn.Dropout(0.5) | ||
19 | + self.fc1 = nn.Linear(9216, 128) | ||
20 | + self.fc2 = nn.Linear(128, 10) | ||
21 | + | ||
22 | + def forward(self, x): | ||
23 | + x = self.conv1(x) | ||
24 | + x = F.relu(x) | ||
25 | + x = self.conv2(x) | ||
26 | + x = F.relu(x) | ||
27 | + x = F.max_pool2d(x, 2) | ||
28 | + x = self.dropout1(x) | ||
29 | + x = torch.flatten(x, 1) | ||
30 | + x = self.fc1(x) | ||
31 | + x = F.relu(x) | ||
32 | + x = self.dropout2(x) | ||
33 | + x = self.fc2(x) | ||
34 | + output = F.log_softmax(x, dim=1) | ||
35 | + return output | ||
36 | + | ||
37 | + | ||
38 | +def train(args, model, device, train_loader, optimizer, epoch): | ||
39 | + model.train() | ||
40 | + for batch_idx, (data, target) in enumerate(train_loader): | ||
41 | + if device.type=="npu": | ||
42 | + target = target.to(torch.int32) | ||
43 | + data, target = data.to(device), target.to(device) | ||
44 | + optimizer.zero_grad() | ||
45 | + output = model(data) | ||
46 | + loss = F.nll_loss(output, target) | ||
47 | + loss.backward() | ||
48 | + optimizer.step() | ||
49 | + if batch_idx % args.log_interval == 0: | ||
50 | + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
51 | + epoch, batch_idx * len(data), len(train_loader.dataset), | ||
52 | + 100. * batch_idx / len(train_loader), loss.item())) | ||
53 | + if args.dry_run: | ||
54 | + break | ||
55 | + | ||
56 | + | ||
57 | +def test(model, device, test_loader): | ||
58 | + model.eval() | ||
59 | + test_loss = 0 | ||
60 | + correct = 0 | ||
61 | + with torch.no_grad(): | ||
62 | + for data, target in test_loader: | ||
63 | + if device.type=="npu": | ||
64 | + target = target.to(torch.int32) | ||
65 | + data, target = data.to(device), target.to(device) | ||
66 | + output = model(data) | ||
67 | + test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | ||
68 | + pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | ||
69 | + correct += pred.eq(target.view_as(pred)).sum().item() | ||
70 | + | ||
71 | + test_loss /= len(test_loader.dataset) | ||
72 | + | ||
73 | + print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | ||
74 | + test_loss, correct, len(test_loader.dataset), | ||
75 | + 100. * correct / len(test_loader.dataset))) | ||
76 | + | ||
77 | + | ||
78 | +def main(): | ||
79 | + # Training settings | ||
80 | + parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | ||
81 | + parser.add_argument('--batch-size', type=int, default=64, metavar='N', | ||
82 | + help='input batch size for training (default: 64)') | ||
83 | + parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | ||
84 | + help='input batch size for testing (default: 1000)') | ||
85 | + parser.add_argument('--epochs', type=int, default=14, metavar='N', | ||
86 | + help='number of epochs to train (default: 14)') | ||
87 | + parser.add_argument('--lr', type=float, default=1.0, metavar='LR', | ||
88 | + help='learning rate (default: 1.0)') | ||
89 | + parser.add_argument('--gamma', type=float, default=0.7, metavar='M', | ||
90 | + help='Learning rate step gamma (default: 0.7)') | ||
91 | + parser.add_argument('--no-cuda', action='store_true', default=False, | ||
92 | + help='disables CUDA training') | ||
93 | + parser.add_argument('--dry-run', action='store_true', default=False, | ||
94 | + help='quickly check a single pass') | ||
95 | + parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
96 | + help='random seed (default: 1)') | ||
97 | + parser.add_argument('--log-interval', type=int, default=10, metavar='N', | ||
98 | + help='how many batches to wait before logging training status') | ||
99 | + parser.add_argument('--save-model', action='store_true', default=False, | ||
100 | + help='For Saving the current Model') | ||
101 | + args = parser.parse_args() | ||
102 | + use_cuda = not args.no_cuda and torch.npu.is_available() | ||
103 | + | ||
104 | + torch.manual_seed(args.seed) | ||
105 | + | ||
106 | + device = torch.device("npu:0" if use_cuda else "cpu") | ||
107 | + | ||
108 | + train_kwargs = {'batch_size': args.batch_size} | ||
109 | + test_kwargs = {'batch_size': args.test_batch_size} | ||
110 | + if use_cuda: | ||
111 | + cuda_kwargs = {'num_workers': 1, | ||
112 | + 'pin_memory': True, | ||
113 | + 'shuffle': True} | ||
114 | + train_kwargs.update(cuda_kwargs) | ||
115 | + test_kwargs.update(cuda_kwargs) | ||
116 | + | ||
117 | + transform=transforms.Compose([ | ||
118 | + transforms.ToTensor(), | ||
119 | + transforms.Normalize((0.1307,), (0.3081,)), | ||
120 | + ]) | ||
121 | + dataset1 = datasets.MNIST('../data', train=True, download=True, | ||
122 | + transform=transform) | ||
123 | + dataset2 = datasets.MNIST('../data', train=False, | ||
124 | + transform=transform) | ||
125 | + train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) | ||
126 | + test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) | ||
127 | + | ||
128 | + model = Net().to(device) | ||
129 | + optimizer = optim.Adadelta(model.parameters(), lr=args.lr) | ||
130 | + | ||
131 | + scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) | ||
132 | + for epoch in range(1, args.epochs + 1): | ||
133 | + train(args, model, device, train_loader, optimizer, epoch) | ||
134 | + test(model, device, test_loader) | ||
135 | + scheduler.step() | ||
136 | + | ||
137 | + if args.save_model: | ||
138 | + torch.save(model.state_dict(), "mnist_cnn.pt") | ||
139 | + | ||
140 | + | ||
141 | +if __name__ == '__main__': | ||
142 | + main() | ||
143 | + |
-
Please register or login to post a comment