Showing
2 changed files
with
1 additions
and
526 deletions
| ... | @@ -76,7 +76,7 @@ def word2features(sent, i): | ... | @@ -76,7 +76,7 @@ def word2features(sent, i): |
| 76 | 'word[:3]': word[:3], | 76 | 'word[:3]': word[:3], |
| 77 | 'word[:2]': word[:2], | 77 | 'word[:2]': word[:2], |
| 78 | 'word[:1]': word[:1], | 78 | 'word[:1]': word[:1], |
| 79 | - 'endsConLow()': endsConLow(word), | 79 | + 'endsConLow()={}'.format(endsConLow(word)): endsConLow(word), |
| 80 | } | 80 | } |
| 81 | ''' | 81 | ''' |
| 82 | if i > 0: | 82 | if i > 0: | ... | ... |
training-validation.py
deleted
100644 → 0
| 1 | -# -*- coding: UTF-8 -*- | ||
| 2 | - | ||
| 3 | -import os | ||
| 4 | -from itertools import chain | ||
| 5 | -from optparse import OptionParser | ||
| 6 | -from time import time | ||
| 7 | -from collections import Counter | ||
| 8 | - | ||
| 9 | -import nltk | ||
| 10 | -import sklearn | ||
| 11 | -import scipy.stats | ||
| 12 | -import sys | ||
| 13 | - | ||
| 14 | -from sklearn.externals import joblib | ||
| 15 | -from sklearn.metrics import make_scorer | ||
| 16 | -from sklearn.cross_validation import cross_val_score | ||
| 17 | -from sklearn.grid_search import RandomizedSearchCV | ||
| 18 | - | ||
| 19 | -import sklearn_crfsuite | ||
| 20 | -from sklearn_crfsuite import scorers | ||
| 21 | -from sklearn_crfsuite import metrics | ||
| 22 | - | ||
| 23 | -from nltk.corpus import stopwords | ||
| 24 | - | ||
| 25 | - | ||
| 26 | -# Objective | ||
| 27 | -# Training and evaluation of CRFs with sklearn-crfsuite. | ||
| 28 | -# | ||
| 29 | -# Input parameters | ||
| 30 | -# --inputPath=PATH Path of training and test data set | ||
| 31 | -# --trainingFile File with training data set | ||
| 32 | -# --testFile File with test data set | ||
| 33 | -# --outputPath=PATH Output path to place output files | ||
| 34 | -# --filteringStopWords Filtering stop words | ||
| 35 | -# --filterSymbols Filtering punctuation marks | ||
| 36 | - | ||
| 37 | -# Output | ||
| 38 | -# 1) Best model | ||
| 39 | - | ||
| 40 | -# Examples | ||
| 41 | -# Sentences | ||
| 42 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile sentencesTraining.txt --testFile sentencesTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS > output.TrainingTestingCRF.20161106_1.txt | ||
| 43 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile sentencesTraining.txt --testFile sentencesTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --filterStopWords > output.TrainingTestingCRF.20161106_2.txt | ||
| 44 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile sentencesTraining.txt --testFile sentencesTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --filterSymbols > output.TrainingTestingCRF.20161106_3.txt | ||
| 45 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile sentencesTraining.txt --testFile sentencesTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --filterStopWords --filterSymbols > output.TrainingTestingCRF.20161106_4.txt | ||
| 46 | - | ||
| 47 | -# Aspects | ||
| 48 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile aspectsTraining.txt --testFile aspectsTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS > output.TrainingTestingCRF.20161106_5.txt | ||
| 49 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile aspectsTraining.txt --testFile aspectsTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --filterStopWords > output.TrainingTestingCRF.20161106_6.txt | ||
| 50 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile aspectsTraining.txt --testFile aspectsTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --filterSymbols > output.TrainingTestingCRF.20161106_7.txt | ||
| 51 | -# C:\Anaconda2\python trainingTesting_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS\trainingTest_Datasets --trainingFile aspectsTraining.txt --testFile aspectsTest.txt --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --filterStopWords --filterSymbols > output.TrainingTestingCRF.20161106_8.txt | ||
| 52 | - | ||
| 53 | -################################# | ||
| 54 | -# FUNCTIONS # | ||
| 55 | -################################# | ||
| 56 | - | ||
| 57 | -def wordSize(text): | ||
| 58 | - lWord = len(text) | ||
| 59 | - if lWord == 1: | ||
| 60 | - return '1' | ||
| 61 | - elif lWord == 2: | ||
| 62 | - return '2' | ||
| 63 | - elif lWord == 3: | ||
| 64 | - return '3' | ||
| 65 | - elif lWord == 4: | ||
| 66 | - return '4' | ||
| 67 | - elif lWord == 5: | ||
| 68 | - return '5' | ||
| 69 | - elif 6 <= lWord <= 10: | ||
| 70 | - return '6-10' | ||
| 71 | - elif 11 <= lWord <= 15: | ||
| 72 | - return '11-15' | ||
| 73 | - elif 16 <= lWord <= 20: | ||
| 74 | - return '16-20' | ||
| 75 | - elif 21 <= lWord <= 30: | ||
| 76 | - return '21-30' | ||
| 77 | - else: | ||
| 78 | - return '>30' | ||
| 79 | - | ||
| 80 | -def hasUpperLower(text): | ||
| 81 | - has = False | ||
| 82 | - if len(text) < 3: | ||
| 83 | - return False | ||
| 84 | - regexUp = nltk.re.compile('[A-Z]') | ||
| 85 | - regexLo = nltk.re.compile('[a-z]') | ||
| 86 | - if (regexUp.search(text) != None) and (regexLo.search(text) != None): | ||
| 87 | - has = True | ||
| 88 | - return has | ||
| 89 | - | ||
| 90 | -def hasDigit(text): | ||
| 91 | - has = False | ||
| 92 | - if len(text) < 3: | ||
| 93 | - return False | ||
| 94 | - myRegex = nltk.re.compile('[0-9]') | ||
| 95 | - if myRegex.search(text) != None: | ||
| 96 | - has = True | ||
| 97 | - return has | ||
| 98 | - | ||
| 99 | - | ||
| 100 | -def hasNonAlphaNum(text): | ||
| 101 | - has = False | ||
| 102 | - if len(text) < 3: | ||
| 103 | - return False | ||
| 104 | - myRegex = nltk.re.compile('\W') | ||
| 105 | - if myRegex.search(text) != None: | ||
| 106 | - has = True | ||
| 107 | - return has | ||
| 108 | - | ||
| 109 | -def word2features(sent, i): | ||
| 110 | - # print "i: " + str(i) | ||
| 111 | - # print "sent[i]" + sent[i] | ||
| 112 | - listElem = sent[i].split('|') | ||
| 113 | - word = listElem[0] | ||
| 114 | - lemma = listElem[1] | ||
| 115 | - postag = listElem[2] | ||
| 116 | - | ||
| 117 | - features = { | ||
| 118 | - # Names of TF and genes change by lower and upper characters: 'word.lower()': word.lower(), | ||
| 119 | - # Suffixes | ||
| 120 | - 'word[-3:]': word[-3:], | ||
| 121 | - 'word[-2:]': word[-2:], | ||
| 122 | - 'word[-1:]': word[-1:], | ||
| 123 | - 'word.isupper()': word.isupper(), | ||
| 124 | - 'word.istitle()': word.istitle(), | ||
| 125 | - 'word.hasDigit()': hasDigit(word), | ||
| 126 | - 'word.hasNonAlphaNum': hasNonAlphaNum(word), | ||
| 127 | - # 'word.hasUpperLower': hasUpperLower(word), | ||
| 128 | - #'wordSize': wordSize(word), | ||
| 129 | - # 'word.isdigit()': word.isdigit(), | ||
| 130 | - 'word': word, | ||
| 131 | - 'lemma': lemma, | ||
| 132 | - 'lemma[-3:]': lemma[-3:], | ||
| 133 | - 'lemma[-2:]': lemma[-2:], | ||
| 134 | - 'lemma[-1:]': lemma[-1:], | ||
| 135 | - 'postag': postag, | ||
| 136 | - # Prefixes | ||
| 137 | - 'postag[:2]': postag[:2], | ||
| 138 | - 'postag[:1]': postag[:1], | ||
| 139 | - } | ||
| 140 | - if i > 0: | ||
| 141 | - listElem = sent[i - 1].split('|') | ||
| 142 | - word1 = listElem[0] | ||
| 143 | - lemma1 = listElem[1] | ||
| 144 | - postag1 = listElem[2] | ||
| 145 | - features.update({ | ||
| 146 | - '-1:word.lower()': word1.lower(), | ||
| 147 | - '-1:word.istitle()': word1.istitle(), | ||
| 148 | - '-1:word.isupper()': word1.isupper(), | ||
| 149 | - '-1:word.hasDigit()': hasDigit(word1), | ||
| 150 | - '-1:word.hasNonAlphaNum': hasNonAlphaNum(word1), | ||
| 151 | - # '-1:word.hasUpperLower': hasUpperLower(word1), | ||
| 152 | - '-1:word': word1, | ||
| 153 | - '-1:lemma': lemma1, | ||
| 154 | - '-1:postag': postag1, | ||
| 155 | - '-1:postag[:2]': postag1[:2], | ||
| 156 | - '-1:postag[:1]': postag1[:1], | ||
| 157 | - }) | ||
| 158 | - # else: | ||
| 159 | - # features['BOS'] = True | ||
| 160 | - | ||
| 161 | - if i < len(sent) - 1: | ||
| 162 | - listElem = sent[i + 1].split('|') | ||
| 163 | - word1 = listElem[0] | ||
| 164 | - lemma1 = listElem[1] | ||
| 165 | - postag1 = listElem[2] | ||
| 166 | - features.update({ | ||
| 167 | - '+1:word.lower()': word1.lower(), | ||
| 168 | - '+1:word.istitle()': word1.istitle(), | ||
| 169 | - '+1:word.isupper()': word1.isupper(), | ||
| 170 | - '+1:word.hasDigit()': hasDigit(word1), | ||
| 171 | - '+1:word.hasNonAlphaNum': hasNonAlphaNum(word1), | ||
| 172 | - # '+1:word.hasUpperLower': hasUpperLower(word1), | ||
| 173 | - '+1:word': word1, | ||
| 174 | - '+1:lemma': lemma1, | ||
| 175 | - '+1:postag': postag1, | ||
| 176 | - '+1:postag[:2]': postag1[:2], | ||
| 177 | - '+1:postag[:1]': postag1[:1], | ||
| 178 | - }) | ||
| 179 | - # else: | ||
| 180 | - # features['EOS'] = True | ||
| 181 | - if i > 1: | ||
| 182 | - listElem = sent[i - 2].split('|') | ||
| 183 | - word2 = listElem[0] | ||
| 184 | - lemma2 = listElem[1] | ||
| 185 | - postag2 = listElem[2] | ||
| 186 | - features.update({ | ||
| 187 | - '-2:word.lower()': word2.lower(), | ||
| 188 | - '-2:word.istitle()': word2.istitle(), | ||
| 189 | - '-2:word.isupper()': word2.isupper(), | ||
| 190 | - '-2:word.hasDigit()': hasDigit(word2), | ||
| 191 | - '-2:word.hasNonAlphaNum': hasNonAlphaNum(word2), | ||
| 192 | - # '-2:word.hasUpperLower': hasUpperLower(word2), | ||
| 193 | - '-2:word': word2, | ||
| 194 | - '-2:lemma': lemma2, | ||
| 195 | - '-2:postag': postag2, | ||
| 196 | - '-2:postag[:2]': postag2[:2], | ||
| 197 | - '-2:postag[:1]': postag2[:1], | ||
| 198 | - }) | ||
| 199 | - | ||
| 200 | - if i < len(sent) - 2: | ||
| 201 | - listElem = sent[i + 2].split('|') | ||
| 202 | - word2 = listElem[0] | ||
| 203 | - lemma2 = listElem[1] | ||
| 204 | - postag2 = listElem[2] | ||
| 205 | - features.update({ | ||
| 206 | - '+2:word.lower()': word2.lower(), | ||
| 207 | - '+2:word.istitle()': word2.istitle(), | ||
| 208 | - '+2:word.isupper()': word2.isupper(), | ||
| 209 | - '+2:word.hasDigit()': hasDigit(word2), | ||
| 210 | - '+2:word.hasNonAlphaNum': hasNonAlphaNum(word2), | ||
| 211 | - # '+2:word.hasUpperLower': hasUpperLower(word2), | ||
| 212 | - '+2:word': word2, | ||
| 213 | - '+2:lemma': lemma2, | ||
| 214 | - '+2:postag': postag2, | ||
| 215 | - '+2:postag[:2]': postag2[:2], | ||
| 216 | - '+2:postag[:1]': postag2[:1], | ||
| 217 | - }) | ||
| 218 | - | ||
| 219 | - trigrams = False | ||
| 220 | - if trigrams: | ||
| 221 | - if i > 2: | ||
| 222 | - listElem = sent[i - 3].split('|') | ||
| 223 | - word3 = listElem[0] | ||
| 224 | - lemma3 = listElem[1] | ||
| 225 | - postag3 = listElem[2] | ||
| 226 | - features.update({ | ||
| 227 | - '-3:word.lower()': word3.lower(), | ||
| 228 | - '-3:word.istitle()': word3.istitle(), | ||
| 229 | - '-3:word.isupper()': word3.isupper(), | ||
| 230 | - '-3:word.hasDigit()': hasDigit(word3), | ||
| 231 | - '-3:word.hasNonAlphaNum': hasNonAlphaNum(word3), | ||
| 232 | - # '-3:word.hasUpperLower': hasUpperLower(word3), | ||
| 233 | - '-3:word': word3, | ||
| 234 | - '-3:lemma': lemma3, | ||
| 235 | - '-3:postag': postag3, | ||
| 236 | - '-3:postag[:2]': postag3[:2], | ||
| 237 | - '-3:postag[:1]': postag3[:1], | ||
| 238 | - }) | ||
| 239 | - | ||
| 240 | - if i < len(sent) - 3: | ||
| 241 | - listElem = sent[i + 3].split('|') | ||
| 242 | - word3 = listElem[0] | ||
| 243 | - lemma3 = listElem[1] | ||
| 244 | - postag3 = listElem[2] | ||
| 245 | - features.update({ | ||
| 246 | - '+3:word.lower()': word3.lower(), | ||
| 247 | - '+3:word.istitle()': word3.istitle(), | ||
| 248 | - '+3:word.isupper()': word3.isupper(), | ||
| 249 | - '+3:word.hasDigit()': hasDigit(word3), | ||
| 250 | - '+3:word.hasNonAlphaNum': hasNonAlphaNum(word3), | ||
| 251 | - # '+3:word.hasUpperLower': hasUpperLower(word3), | ||
| 252 | - '+3:word': word3, | ||
| 253 | - '+3:lemma': lemma3, | ||
| 254 | - '+3:postag': postag3, | ||
| 255 | - '+3:postag[:2]': postag3[:2], | ||
| 256 | - '+3:postag[:1]': postag3[:1], | ||
| 257 | - }) | ||
| 258 | - | ||
| 259 | - return features | ||
| 260 | - | ||
| 261 | - | ||
| 262 | -def sent2features(sent): | ||
| 263 | - return [word2features(sent, i) for i in range(len(sent))] | ||
| 264 | - | ||
| 265 | - | ||
| 266 | -def sent2labels(sent): | ||
| 267 | - return [elem.split('|')[3] for elem in sent] | ||
| 268 | - # return [label for token, postag, label in sent] | ||
| 269 | - | ||
| 270 | - | ||
| 271 | -def sent2tokens(sent): | ||
| 272 | - return [token for token, postag, label in sent] | ||
| 273 | - | ||
| 274 | - | ||
| 275 | -def print_transitions(trans_features, f): | ||
| 276 | - for (label_from, label_to), weight in trans_features: | ||
| 277 | - # f.write("%-6s -> %-7s %0.6f\n" % (label_from, label_to, weight)) | ||
| 278 | - # f.write("label_from :" + label_from) | ||
| 279 | - # f.write("label_to :" + label_to) | ||
| 280 | - # f.write("label_weight :" + weight) | ||
| 281 | - # f.write("{} -> {} {:0.6f}\n".format(label_from.encode("utf-8"), label_to.encode("utf-8"), weight)) | ||
| 282 | - f.write("{:6} -> {:7} {:0.6f}\n".format(label_from, label_to, weight)) | ||
| 283 | - | ||
| 284 | - | ||
| 285 | -def print_state_features(state_features, f): | ||
| 286 | - for (attr, label), weight in state_features: | ||
| 287 | - # f.write("%0.6f %-8s %s\n" % (weight, label, attr)) | ||
| 288 | - # f.write(attr.encode("utf-8")) | ||
| 289 | - # '{:06.2f}'.format(3.141592653589793) | ||
| 290 | - f.write("{:0.6f} {:8} {}\n".format(weight, label, attr.encode("utf-8"))) | ||
| 291 | - | ||
| 292 | - | ||
| 293 | -__author__ = 'CMendezC' | ||
| 294 | - | ||
| 295 | -########################################## | ||
| 296 | -# MAIN PROGRAM # | ||
| 297 | -########################################## | ||
| 298 | - | ||
| 299 | -if __name__ == "__main__": | ||
| 300 | - # Defining parameters | ||
| 301 | - parser = OptionParser() | ||
| 302 | - parser.add_option("--inputPath", dest="inputPath", | ||
| 303 | - help="Path of training data set", metavar="PATH") | ||
| 304 | - parser.add_option("--outputPath", dest="outputPath", | ||
| 305 | - help="Output path to place output files", | ||
| 306 | - metavar="PATH") | ||
| 307 | - parser.add_option("--trainingFile", dest="trainingFile", | ||
| 308 | - help="File with training data set", metavar="FILE") | ||
| 309 | - parser.add_option("--testFile", dest="testFile", | ||
| 310 | - help="File with test data set", metavar="FILE") | ||
| 311 | - parser.add_option("--filterStopWords", default=False, | ||
| 312 | - action="store_true", dest="filterStopWords", | ||
| 313 | - help="Filtering stop words") | ||
| 314 | - parser.add_option("--filterSymbols", default=False, | ||
| 315 | - action="store_true", dest="filterSymbols", | ||
| 316 | - help="Filtering punctuation marks") | ||
| 317 | - | ||
| 318 | - (options, args) = parser.parse_args() | ||
| 319 | - if len(args) > 0: | ||
| 320 | - parser.error("Any parameter given.") | ||
| 321 | - sys.exit(1) | ||
| 322 | - | ||
| 323 | - print('-------------------------------- PARAMETERS --------------------------------') | ||
| 324 | - print("Path of training data set: " + options.inputPath) | ||
| 325 | - print("File with training data set: " + str(options.trainingFile)) | ||
| 326 | - print("Path of test data set: " + options.inputPath) | ||
| 327 | - print("File with test data set: " + str(options.testFile)) | ||
| 328 | - print("Filtering stop words: " + str(options.filterStopWords)) | ||
| 329 | - symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{', | ||
| 330 | - '}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...'] | ||
| 331 | - print("Filtering symbols " + str(symbols) + ': ' + str(options.filterSymbols)) | ||
| 332 | - | ||
| 333 | - print('-------------------------------- PROCESSING --------------------------------') | ||
| 334 | - print('Reading corpus...') | ||
| 335 | - t0 = time() | ||
| 336 | - | ||
| 337 | - sentencesTrainingData = [] | ||
| 338 | - sentencesTestData = [] | ||
| 339 | - | ||
| 340 | - stopwords = [word.decode('utf-8') for word in stopwords.words('english')] | ||
| 341 | - | ||
| 342 | - with open(os.path.join(options.inputPath, options.trainingFile), "r") as iFile: | ||
| 343 | - # with open(os.path.join(options.inputPath, options.trainingFile), "r", encoding="utf-8", errors='replace') as iFile: | ||
| 344 | - for line in iFile.readlines(): | ||
| 345 | - listLine = [] | ||
| 346 | - line = line.decode("utf-8") | ||
| 347 | - for token in line.strip('\n').split(): | ||
| 348 | - if options.filterStopWords: | ||
| 349 | - listToken = token.split('|') | ||
| 350 | - lemma = listToken[1] | ||
| 351 | - # Original: if lemma in stopwords.words('english'): | ||
| 352 | - # trainingTesting_Sklearn_crfsuite.py:269: | ||
| 353 | - # UnicodeWarning: Unicode equal comparison failed to | ||
| 354 | - # convert both arguments to Unicode - | ||
| 355 | - # interpreting them as being unequal | ||
| 356 | - if lemma in stopwords: | ||
| 357 | - continue | ||
| 358 | - if options.filterSymbols: | ||
| 359 | - listToken = token.split('|') | ||
| 360 | - lemma = listToken[1] | ||
| 361 | - if lemma in symbols: | ||
| 362 | - # if lemma == ',': | ||
| 363 | - # print "Coma , identificada" | ||
| 364 | - continue | ||
| 365 | - listLine.append(token) | ||
| 366 | - sentencesTrainingData.append(listLine) | ||
| 367 | - print " Sentences training data: " + str(len(sentencesTrainingData)) | ||
| 368 | - # print sentencesTrainingData[0] | ||
| 369 | - | ||
| 370 | - with open(os.path.join(options.inputPath, options.testFile), "r") as iFile: | ||
| 371 | - # with open(os.path.join(options.inputPath, options.testFile), "r", encoding="utf-8", errors='replace') as iFile: | ||
| 372 | - for line in iFile.readlines(): | ||
| 373 | - listLine = [] | ||
| 374 | - line = line.decode("utf-8") | ||
| 375 | - for token in line.strip('\n').split(): | ||
| 376 | - if options.filterStopWords: | ||
| 377 | - listToken = token.split('|') | ||
| 378 | - lemma = listToken[1] | ||
| 379 | - # Original if lemma in stopwords.words('english'): | ||
| 380 | - if lemma in stopwords: | ||
| 381 | - continue | ||
| 382 | - if options.filterSymbols: | ||
| 383 | - listToken = token.split('|') | ||
| 384 | - lemma = listToken[1] | ||
| 385 | - if lemma in symbols: | ||
| 386 | - # if lemma == ',': | ||
| 387 | - # print "Coma , identificada" | ||
| 388 | - continue | ||
| 389 | - listLine.append(token) | ||
| 390 | - sentencesTestData.append(listLine) | ||
| 391 | - print " Sentences test data: " + str(len(sentencesTestData)) | ||
| 392 | - # print sentencesTestData[0] | ||
| 393 | - | ||
| 394 | - print("Reading corpus done in: %fs" % (time() - t0)) | ||
| 395 | - | ||
| 396 | - print(sent2features(sentencesTrainingData[0])[0]) | ||
| 397 | - print(sent2features(sentencesTestData[0])[0]) | ||
| 398 | - # print(sent2labels(sentencesTrainingData[0])) | ||
| 399 | - # print(sent2labels(sentencesTestData[0])) | ||
| 400 | - t0 = time() | ||
| 401 | - | ||
| 402 | - X_train = [sent2features(s) for s in sentencesTrainingData] | ||
| 403 | - y_train = [sent2labels(s) for s in sentencesTrainingData] | ||
| 404 | - | ||
| 405 | - X_test = [sent2features(s) for s in sentencesTestData] | ||
| 406 | - # print X_test | ||
| 407 | - y_test = [sent2labels(s) for s in sentencesTestData] | ||
| 408 | - | ||
| 409 | - # Fixed parameters | ||
| 410 | - # crf = sklearn_crfsuite.CRF( | ||
| 411 | - # algorithm='lbfgs', | ||
| 412 | - # c1=0.1, | ||
| 413 | - # c2=0.1, | ||
| 414 | - # max_iterations=100, | ||
| 415 | - # all_possible_transitions=True | ||
| 416 | - # ) | ||
| 417 | - | ||
| 418 | - # Hyperparameter Optimization | ||
| 419 | - crf = sklearn_crfsuite.CRF( | ||
| 420 | - algorithm='lbfgs', | ||
| 421 | - max_iterations=100, | ||
| 422 | - all_possible_transitions=True | ||
| 423 | - ) | ||
| 424 | - params_space = { | ||
| 425 | - 'c1': scipy.stats.expon(scale=0.5), | ||
| 426 | - 'c2': scipy.stats.expon(scale=0.05), | ||
| 427 | - } | ||
| 428 | - | ||
| 429 | - # Original: labels = list(crf.classes_) | ||
| 430 | - # Original: labels.remove('O') | ||
| 431 | - labels = list(['GENE']) | ||
| 432 | - | ||
| 433 | - # use the same metric for evaluation | ||
| 434 | - f1_scorer = make_scorer(metrics.flat_f1_score, | ||
| 435 | - average='weighted', labels=labels) | ||
| 436 | - | ||
| 437 | - # search | ||
| 438 | - rs = RandomizedSearchCV(crf, params_space, | ||
| 439 | - cv=10, | ||
| 440 | - verbose=3, | ||
| 441 | - n_jobs=-1, | ||
| 442 | - n_iter=20, | ||
| 443 | - # n_iter=50, | ||
| 444 | - scoring=f1_scorer) | ||
| 445 | - rs.fit(X_train, y_train) | ||
| 446 | - | ||
| 447 | - # Fixed parameters | ||
| 448 | - # crf.fit(X_train, y_train) | ||
| 449 | - | ||
| 450 | - # Best hiperparameters | ||
| 451 | - # crf = rs.best_estimator_ | ||
| 452 | - nameReport = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.filterStopWords) + '.fSymbols_' + str( | ||
| 453 | - options.filterSymbols) + '.txt') | ||
| 454 | - with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="w") as oFile: | ||
| 455 | - oFile.write("********** TRAINING AND TESTING REPORT **********\n") | ||
| 456 | - oFile.write("Training file: " + options.trainingFile + '\n') | ||
| 457 | - oFile.write('\n') | ||
| 458 | - oFile.write('best params:' + str(rs.best_params_) + '\n') | ||
| 459 | - oFile.write('best CV score:' + str(rs.best_score_) + '\n') | ||
| 460 | - oFile.write('model size: {:0.2f}M\n'.format(rs.best_estimator_.size_ / 1000000)) | ||
| 461 | - | ||
| 462 | - print("Training done in: %fs" % (time() - t0)) | ||
| 463 | - t0 = time() | ||
| 464 | - | ||
| 465 | - # Update best crf | ||
| 466 | - crf = rs.best_estimator_ | ||
| 467 | - | ||
| 468 | - # Saving model | ||
| 469 | - print(" Saving training model...") | ||
| 470 | - t1 = time() | ||
| 471 | - nameModel = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.filterStopWords) + '.fSymbols_' + str( | ||
| 472 | - options.filterSymbols) + '.mod') | ||
| 473 | - joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel)) | ||
| 474 | - print(" Saving training model done in: %fs" % (time() - t1)) | ||
| 475 | - | ||
| 476 | - # Evaluation against test data | ||
| 477 | - y_pred = crf.predict(X_test) | ||
| 478 | - print("*********************************") | ||
| 479 | - name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.filterStopWords) + '.fSymbols_' + str( | ||
| 480 | - options.filterSymbols) + '.txt') | ||
| 481 | - with open(os.path.join(options.outputPath, "reports", "y_pred_" + name), "w") as oFile: | ||
| 482 | - for y in y_pred: | ||
| 483 | - oFile.write(str(y) + '\n') | ||
| 484 | - | ||
| 485 | - print("*********************************") | ||
| 486 | - name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.filterStopWords) + '.fSymbols_' + str( | ||
| 487 | - options.filterSymbols) + '.txt') | ||
| 488 | - with open(os.path.join(options.outputPath, "reports", "y_test_" + name), "w") as oFile: | ||
| 489 | - for y in y_test: | ||
| 490 | - oFile.write(str(y) + '\n') | ||
| 491 | - | ||
| 492 | - print("Prediction done in: %fs" % (time() - t0)) | ||
| 493 | - | ||
| 494 | - # labels = list(crf.classes_) | ||
| 495 | - # labels.remove('O') | ||
| 496 | - | ||
| 497 | - with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="a") as oFile: | ||
| 498 | - oFile.write('\n') | ||
| 499 | - oFile.write("Flat F1: " + str(metrics.flat_f1_score(y_test, y_pred, average='weighted', labels=labels))) | ||
| 500 | - oFile.write('\n') | ||
| 501 | - # labels = list(crf.classes_) | ||
| 502 | - sorted_labels = sorted( | ||
| 503 | - labels, | ||
| 504 | - key=lambda name: (name[1:], name[0]) | ||
| 505 | - ) | ||
| 506 | - oFile.write(metrics.flat_classification_report( | ||
| 507 | - y_test, y_pred, labels=sorted_labels, digits=3 | ||
| 508 | - )) | ||
| 509 | - oFile.write('\n') | ||
| 510 | - | ||
| 511 | - oFile.write("\nTop likely transitions:\n") | ||
| 512 | - print_transitions(Counter(crf.transition_features_).most_common(50), oFile) | ||
| 513 | - oFile.write('\n') | ||
| 514 | - | ||
| 515 | - oFile.write("\nTop unlikely transitions:\n") | ||
| 516 | - print_transitions(Counter(crf.transition_features_).most_common()[-50:], oFile) | ||
| 517 | - oFile.write('\n') | ||
| 518 | - | ||
| 519 | - oFile.write("\nTop positive:\n") | ||
| 520 | - print_state_features(Counter(crf.state_features_).most_common(200), oFile) | ||
| 521 | - oFile.write('\n') | ||
| 522 | - | ||
| 523 | - oFile.write("\nTop negative:\n") | ||
| 524 | - print_state_features(Counter(crf.state_features_).most_common()[-200:], oFile) | ||
| 525 | - oFile.write('\n') |
-
Please register or login to post a comment