Showing
3 changed files
with
789 additions
and
71 deletions
training_validation_v1-1.py
0 → 100644
| 1 | +# -*- coding: UTF-8 -*- | ||
| 2 | + | ||
| 3 | +import os | ||
| 4 | +from itertools import chain | ||
| 5 | +from optparse import OptionParser | ||
| 6 | +from time import time | ||
| 7 | +from collections import Counter | ||
| 8 | +import re | ||
| 9 | + | ||
| 10 | +import nltk | ||
| 11 | +import sklearn | ||
| 12 | +import scipy.stats | ||
| 13 | +import sys | ||
| 14 | + | ||
| 15 | +from sklearn.externals import joblib | ||
| 16 | +from sklearn.metrics import make_scorer | ||
| 17 | +from sklearn.cross_validation import cross_val_score | ||
| 18 | +from sklearn.grid_search import RandomizedSearchCV | ||
| 19 | + | ||
| 20 | +import sklearn_crfsuite | ||
| 21 | +from sklearn_crfsuite import scorers | ||
| 22 | +from sklearn_crfsuite import metrics | ||
| 23 | + | ||
| 24 | +from nltk.corpus import stopwords | ||
| 25 | + | ||
| 26 | + | ||
| 27 | +# Objective | ||
| 28 | +# Training and evaluation of CRFs with sklearn-crfsuite. | ||
| 29 | +# | ||
| 30 | +# Input parameters | ||
| 31 | +# --inputPath=PATH Path of training and test data set | ||
| 32 | +# --trainingFile File with training data set | ||
| 33 | +# --testFile File with test data set | ||
| 34 | +# --outputPath=PATH Output path to place output files | ||
| 35 | +# --filteringStopWords Filtering stop words | ||
| 36 | +# --excludeSymbols Filtering punctuation marks | ||
| 37 | + | ||
| 38 | +# Output | ||
| 39 | +# 1) Best model | ||
| 40 | + | ||
| 41 | +# Examples | ||
| 42 | +# python3.4 training-validation-v1.py | ||
| 43 | +# --inputPath /export/space1/users/compu2/bionlp/conditional-random-fields/data-sets | ||
| 44 | +# --trainingFile training-data-set-70.txt | ||
| 45 | +# --testFile test-data-set-30.txt | ||
| 46 | +# --outputPath /export/space1/users/compu2/bionlp/conditional-random-fields | ||
| 47 | +# python3.4 training-validation-v1.py --inputPath /export/space1/users/compu2/bionlp/conditional-random-fields/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /export/space1/users/compu2/bionlp/conditional-random-fields | ||
| 48 | + | ||
| 49 | +################################# | ||
| 50 | +# FUNCTIONS # | ||
| 51 | +################################# | ||
| 52 | +def endsConLow(word): | ||
| 53 | + miregex = re.compile(r'[^aeiouA-Z0-9]$') | ||
| 54 | + if miregex.search(word): | ||
| 55 | + return True | ||
| 56 | + else: | ||
| 57 | + return False | ||
| 58 | + | ||
| 59 | +def word2features(sent, i): | ||
| 60 | + listElem = sent[i].split('|') | ||
| 61 | + word = listElem[0] | ||
| 62 | + lemma = listElem[1] | ||
| 63 | + postag = listElem[2] | ||
| 64 | + | ||
| 65 | + features = { | ||
| 66 | + # Suffixes | ||
| 67 | + #'word[-3:]': word[-3:], | ||
| 68 | + #'word[-2:]': word[-2:], | ||
| 69 | + #'word[-1:]': word[-1:], | ||
| 70 | + #'word.isupper()': word.isupper(), | ||
| 71 | + #'word': word, | ||
| 72 | + #'lemma': lemma, | ||
| 73 | + #'postag': postag, | ||
| 74 | + 'lemma[-3:]': lemma[-3:], | ||
| 75 | + 'lemma[-2:]': lemma[-2:], | ||
| 76 | + 'lemma[-1:]': lemma[-1:], | ||
| 77 | + 'lemma[+3:]': lemma[:3], | ||
| 78 | + 'lemma[+2:]': lemma[:2], | ||
| 79 | + 'lemma[+1:]': lemma[:1], | ||
| 80 | + #'word[:3]': word[:3], | ||
| 81 | + #'word[:2]': word[:2], | ||
| 82 | + #'word[:1]': word[:1], | ||
| 83 | + #'endsConLow()={}'.format(endsConLow(word)): endsConLow(word), | ||
| 84 | + } | ||
| 85 | + if i > 0: | ||
| 86 | + listElem = sent[i - 1].split('|') | ||
| 87 | + word1 = listElem[0] | ||
| 88 | + lemma1 = listElem[1] | ||
| 89 | + postag1 = listElem[2] | ||
| 90 | + features.update({ | ||
| 91 | + #'-1:word': word1, | ||
| 92 | + '-1:lemma': lemma1, | ||
| 93 | + '-1:postag': postag1, | ||
| 94 | + }) | ||
| 95 | + | ||
| 96 | + if i < len(sent) - 1: | ||
| 97 | + listElem = sent[i + 1].split('|') | ||
| 98 | + word1 = listElem[0] | ||
| 99 | + lemma1 = listElem[1] | ||
| 100 | + postag1 = listElem[2] | ||
| 101 | + features.update({ | ||
| 102 | + #'+1:word': word1, | ||
| 103 | + '+1:lemma': lemma1, | ||
| 104 | + '+1:postag': postag1, | ||
| 105 | + }) | ||
| 106 | + | ||
| 107 | + ''' | ||
| 108 | + if i > 1: | ||
| 109 | + listElem = sent[i - 2].split('|') | ||
| 110 | + word2 = listElem[0] | ||
| 111 | + lemma2 = listElem[1] | ||
| 112 | + postag2 = listElem[2] | ||
| 113 | + features.update({ | ||
| 114 | + '-2:word': word2, | ||
| 115 | + '-2:lemma': lemma2, | ||
| 116 | + }) | ||
| 117 | + | ||
| 118 | + if i < len(sent) - 2: | ||
| 119 | + listElem = sent[i + 2].split('|') | ||
| 120 | + word2 = listElem[0] | ||
| 121 | + lemma2 = listElem[1] | ||
| 122 | + postag2 = listElem[2] | ||
| 123 | + features.update({ | ||
| 124 | + '+2:word': word2, | ||
| 125 | + '+2:lemma': lemma2, | ||
| 126 | + }) | ||
| 127 | + | ||
| 128 | + trigrams = False | ||
| 129 | + if trigrams: | ||
| 130 | + if i > 2: | ||
| 131 | + listElem = sent[i - 3].split('|') | ||
| 132 | + word3 = listElem[0] | ||
| 133 | + lemma3 = listElem[1] | ||
| 134 | + postag3 = listElem[2] | ||
| 135 | + features.update({ | ||
| 136 | + '-3:word': word3, | ||
| 137 | + '-3:lemma': lemma3, | ||
| 138 | + }) | ||
| 139 | + | ||
| 140 | + if i < len(sent) - 3: | ||
| 141 | + listElem = sent[i + 3].split('|') | ||
| 142 | + word3 = listElem[0] | ||
| 143 | + lemma3 = listElem[1] | ||
| 144 | + postag3 = listElem[2] | ||
| 145 | + features.update({ | ||
| 146 | + '+3:word': word3, | ||
| 147 | + '+3:lemma': lemma3, | ||
| 148 | + }) | ||
| 149 | + ''' | ||
| 150 | + return features | ||
| 151 | + | ||
| 152 | + | ||
| 153 | +def sent2features(sent): | ||
| 154 | + return [word2features(sent, i) for i in range(len(sent))] | ||
| 155 | + | ||
| 156 | + | ||
| 157 | +def sent2labels(sent): | ||
| 158 | + return [elem.split('|')[3] for elem in sent] | ||
| 159 | + | ||
| 160 | + | ||
| 161 | +def sent2tokens(sent): | ||
| 162 | + return [token for token, postag, label in sent] | ||
| 163 | + | ||
| 164 | + | ||
| 165 | +def print_transitions(trans_features, f): | ||
| 166 | + for (label_from, label_to), weight in trans_features: | ||
| 167 | + f.write("{:6} -> {:7} {:0.6f}\n".format(label_from, label_to, weight)) | ||
| 168 | + | ||
| 169 | + | ||
| 170 | +def print_state_features(state_features, f): | ||
| 171 | + for (attr, label), weight in state_features: | ||
| 172 | + f.write("{:0.6f} {:8} {}\n".format(weight, label, attr.encode("utf-8"))) | ||
| 173 | + | ||
| 174 | + | ||
| 175 | +__author__ = 'CMendezC' | ||
| 176 | + | ||
| 177 | +########################################## | ||
| 178 | +# MAIN PROGRAM # | ||
| 179 | +########################################## | ||
| 180 | + | ||
| 181 | +if __name__ == "__main__": | ||
| 182 | + # Defining parameters | ||
| 183 | + parser = OptionParser() | ||
| 184 | + parser.add_option("--inputPath", dest="inputPath", | ||
| 185 | + help="Path of training data set", metavar="PATH") | ||
| 186 | + parser.add_option("--outputPath", dest="outputPath", | ||
| 187 | + help="Output path to place output files", | ||
| 188 | + metavar="PATH") | ||
| 189 | + parser.add_option("--trainingFile", dest="trainingFile", | ||
| 190 | + help="File with training data set", metavar="FILE") | ||
| 191 | + parser.add_option("--testFile", dest="testFile", | ||
| 192 | + help="File with test data set", metavar="FILE") | ||
| 193 | + parser.add_option("--excludeStopWords", default=False, | ||
| 194 | + action="store_true", dest="excludeStopWords", | ||
| 195 | + help="Exclude stop words") | ||
| 196 | + parser.add_option("--excludeSymbols", default=False, | ||
| 197 | + action="store_true", dest="excludeSymbols", | ||
| 198 | + help="Exclude punctuation marks") | ||
| 199 | + | ||
| 200 | + (options, args) = parser.parse_args() | ||
| 201 | + if len(args) > 0: | ||
| 202 | + parser.error("Any parameter given.") | ||
| 203 | + sys.exit(1) | ||
| 204 | + | ||
| 205 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
| 206 | + print("Path of training data set: " + options.inputPath) | ||
| 207 | + print("File with training data set: " + str(options.trainingFile)) | ||
| 208 | + print("Path of test data set: " + options.inputPath) | ||
| 209 | + print("File with test data set: " + str(options.testFile)) | ||
| 210 | + print("Exclude stop words: " + str(options.excludeStopWords)) | ||
| 211 | + symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{', | ||
| 212 | + '}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...'] | ||
| 213 | + #print("Exclude symbols " + str(symbols) + ': ' + str(options.excludeSymbols)) | ||
| 214 | + print("Exclude symbols: " + str(options.excludeSymbols)) | ||
| 215 | + | ||
| 216 | + print('-------------------------------- PROCESSING --------------------------------') | ||
| 217 | + print('Reading corpus...') | ||
| 218 | + t0 = time() | ||
| 219 | + | ||
| 220 | + sentencesTrainingData = [] | ||
| 221 | + sentencesTestData = [] | ||
| 222 | + | ||
| 223 | + stopwords = [word for word in stopwords.words('english')] | ||
| 224 | + | ||
| 225 | + with open(os.path.join(options.inputPath, options.trainingFile), "r") as iFile: | ||
| 226 | + for line in iFile.readlines(): | ||
| 227 | + listLine = [] | ||
| 228 | + line = line.strip('\n') | ||
| 229 | + for token in line.split(): | ||
| 230 | + if options.excludeStopWords: | ||
| 231 | + listToken = token.split('|') | ||
| 232 | + lemma = listToken[1] | ||
| 233 | + if lemma in stopwords: | ||
| 234 | + continue | ||
| 235 | + if options.excludeSymbols: | ||
| 236 | + listToken = token.split('|') | ||
| 237 | + lemma = listToken[1] | ||
| 238 | + if lemma in symbols: | ||
| 239 | + continue | ||
| 240 | + listLine.append(token) | ||
| 241 | + sentencesTrainingData.append(listLine) | ||
| 242 | + print(" Sentences training data: " + str(len(sentencesTrainingData))) | ||
| 243 | + | ||
| 244 | + with open(os.path.join(options.inputPath, options.testFile), "r") as iFile: | ||
| 245 | + for line in iFile.readlines(): | ||
| 246 | + listLine = [] | ||
| 247 | + line = line.strip('\n') | ||
| 248 | + for token in line.split(): | ||
| 249 | + if options.excludeStopWords: | ||
| 250 | + listToken = token.split('|') | ||
| 251 | + lemma = listToken[1] | ||
| 252 | + if lemma in stopwords: | ||
| 253 | + continue | ||
| 254 | + if options.excludeSymbols: | ||
| 255 | + listToken = token.split('|') | ||
| 256 | + lemma = listToken[1] | ||
| 257 | + if lemma in symbols: | ||
| 258 | + continue | ||
| 259 | + listLine.append(token) | ||
| 260 | + sentencesTestData.append(listLine) | ||
| 261 | + print(" Sentences test data: " + str(len(sentencesTestData))) | ||
| 262 | + | ||
| 263 | + print("Reading corpus done in: %fs" % (time() - t0)) | ||
| 264 | + | ||
| 265 | + #print(sent2features(sentencesTrainingData[0])[0]) | ||
| 266 | + #print(sent2features(sentencesTestData[0])[0]) | ||
| 267 | + t0 = time() | ||
| 268 | + | ||
| 269 | + X_train = [sent2features(s) for s in sentencesTrainingData] | ||
| 270 | + y_train = [sent2labels(s) for s in sentencesTrainingData] | ||
| 271 | + | ||
| 272 | + X_test = [sent2features(s) for s in sentencesTestData] | ||
| 273 | + # print X_test | ||
| 274 | + y_test = [sent2labels(s) for s in sentencesTestData] | ||
| 275 | + | ||
| 276 | + # Fixed parameters | ||
| 277 | + # crf = sklearn_crfsuite.CRF( | ||
| 278 | + # algorithm='lbfgs', | ||
| 279 | + # c1=0.1, | ||
| 280 | + # c2=0.1, | ||
| 281 | + # max_iterations=100, | ||
| 282 | + # all_possible_transitions=True | ||
| 283 | + # ) | ||
| 284 | + | ||
| 285 | + # Hyperparameter Optimization | ||
| 286 | + crf = sklearn_crfsuite.CRF( | ||
| 287 | + algorithm='lbfgs', | ||
| 288 | + max_iterations=100, | ||
| 289 | + all_possible_transitions=True | ||
| 290 | + ) | ||
| 291 | + params_space = { | ||
| 292 | + 'c1': scipy.stats.expon(scale=0.5), | ||
| 293 | + 'c2': scipy.stats.expon(scale=0.05), | ||
| 294 | + } | ||
| 295 | + | ||
| 296 | + # Original: labels = list(crf.classes_) | ||
| 297 | + # Original: labels.remove('O') | ||
| 298 | + labels = list(['GENE']) | ||
| 299 | + | ||
| 300 | + # use the same metric for evaluation | ||
| 301 | + f1_scorer = make_scorer(metrics.flat_f1_score, | ||
| 302 | + average='weighted', labels=labels) | ||
| 303 | + | ||
| 304 | + # search | ||
| 305 | + rs = RandomizedSearchCV(crf, params_space, | ||
| 306 | + cv=10, | ||
| 307 | + verbose=3, | ||
| 308 | + n_jobs=-1, | ||
| 309 | + n_iter=20, | ||
| 310 | + # n_iter=50, | ||
| 311 | + scoring=f1_scorer) | ||
| 312 | + rs.fit(X_train, y_train) | ||
| 313 | + | ||
| 314 | + # Fixed parameters | ||
| 315 | + # crf.fit(X_train, y_train) | ||
| 316 | + | ||
| 317 | + # Best hiperparameters | ||
| 318 | + # crf = rs.best_estimator_ | ||
| 319 | + nameReport = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 320 | + options.excludeSymbols) + '.txt') | ||
| 321 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="w") as oFile: | ||
| 322 | + oFile.write("********** TRAINING AND TESTING REPORT **********\n") | ||
| 323 | + oFile.write("Training file: " + options.trainingFile + '\n') | ||
| 324 | + oFile.write('\n') | ||
| 325 | + oFile.write('best params:' + str(rs.best_params_) + '\n') | ||
| 326 | + oFile.write('best CV score:' + str(rs.best_score_) + '\n') | ||
| 327 | + oFile.write('model size: {:0.2f}M\n'.format(rs.best_estimator_.size_ / 1000000)) | ||
| 328 | + | ||
| 329 | + print("Training done in: %fs" % (time() - t0)) | ||
| 330 | + t0 = time() | ||
| 331 | + | ||
| 332 | + # Update best crf | ||
| 333 | + crf = rs.best_estimator_ | ||
| 334 | + | ||
| 335 | + # Saving model | ||
| 336 | + print(" Saving training model...") | ||
| 337 | + t1 = time() | ||
| 338 | + nameModel = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 339 | + options.excludeSymbols) + '.mod') | ||
| 340 | + joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel)) | ||
| 341 | + print(" Saving training model done in: %fs" % (time() - t1)) | ||
| 342 | + | ||
| 343 | + # Evaluation against test data | ||
| 344 | + y_pred = crf.predict(X_test) | ||
| 345 | + print("*********************************") | ||
| 346 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 347 | + options.excludeSymbols) + '.txt') | ||
| 348 | + with open(os.path.join(options.outputPath, "reports", "y_pred_" + name), "w") as oFile: | ||
| 349 | + for y in y_pred: | ||
| 350 | + oFile.write(str(y) + '\n') | ||
| 351 | + | ||
| 352 | + print("*********************************") | ||
| 353 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 354 | + options.excludeSymbols) + '.txt') | ||
| 355 | + with open(os.path.join(options.outputPath, "reports", "y_test_" + name), "w") as oFile: | ||
| 356 | + for y in y_test: | ||
| 357 | + oFile.write(str(y) + '\n') | ||
| 358 | + | ||
| 359 | + print("Prediction done in: %fs" % (time() - t0)) | ||
| 360 | + | ||
| 361 | + # labels = list(crf.classes_) | ||
| 362 | + # labels.remove('O') | ||
| 363 | + | ||
| 364 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="a") as oFile: | ||
| 365 | + oFile.write('\n') | ||
| 366 | + oFile.write("Flat F1: " + str(metrics.flat_f1_score(y_test, y_pred, average='weighted', labels=labels))) | ||
| 367 | + oFile.write('\n') | ||
| 368 | + # labels = list(crf.classes_) | ||
| 369 | + sorted_labels = sorted( | ||
| 370 | + labels, | ||
| 371 | + key=lambda name: (name[1:], name[0]) | ||
| 372 | + ) | ||
| 373 | + oFile.write(metrics.flat_classification_report( | ||
| 374 | + y_test, y_pred, labels=sorted_labels, digits=3 | ||
| 375 | + )) | ||
| 376 | + oFile.write('\n') | ||
| 377 | + | ||
| 378 | + oFile.write("\nTop likely transitions:\n") | ||
| 379 | + print_transitions(Counter(crf.transition_features_).most_common(50), oFile) | ||
| 380 | + oFile.write('\n') | ||
| 381 | + | ||
| 382 | + oFile.write("\nTop unlikely transitions:\n") | ||
| 383 | + print_transitions(Counter(crf.transition_features_).most_common()[-50:], oFile) | ||
| 384 | + oFile.write('\n') | ||
| 385 | + | ||
| 386 | + oFile.write("\nTop positive:\n") | ||
| 387 | + print_state_features(Counter(crf.state_features_).most_common(200), oFile) | ||
| 388 | + oFile.write('\n') | ||
| 389 | + | ||
| 390 | + oFile.write("\nTop negative:\n") | ||
| 391 | + print_state_features(Counter(crf.state_features_).most_common()[-200:], oFile) | ||
| 392 | + oFile.write('\n') |
| ... | @@ -49,42 +49,21 @@ from nltk.corpus import stopwords | ... | @@ -49,42 +49,21 @@ from nltk.corpus import stopwords |
| 49 | ################################# | 49 | ################################# |
| 50 | # FUNCTIONS # | 50 | # FUNCTIONS # |
| 51 | ################################# | 51 | ################################# |
| 52 | -def endsConLow(word): | ||
| 53 | - miregex = re.compile(r'[^aeiouA-Z0-9]$') | ||
| 54 | - if miregex.search(word): | ||
| 55 | - return True | ||
| 56 | - else: | ||
| 57 | - return False | ||
| 58 | - | ||
| 59 | def word2features(sent, i): | 52 | def word2features(sent, i): |
| 60 | listElem = sent[i].split('|') | 53 | listElem = sent[i].split('|') |
| 61 | word = listElem[0] | 54 | word = listElem[0] |
| 55 | + #print("word: {}".format(word)) | ||
| 62 | lemma = listElem[1] | 56 | lemma = listElem[1] |
| 63 | postag = listElem[2] | 57 | postag = listElem[2] |
| 64 | 58 | ||
| 65 | features = { | 59 | features = { |
| 66 | - # Suffixes | ||
| 67 | - #'word[-3:]': word[-3:], | ||
| 68 | - #'word[-2:]': word[-2:], | ||
| 69 | - #'word[-1:]': word[-1:], | ||
| 70 | - #'word.isupper()': word.isupper(), | ||
| 71 | #'word': word, | 60 | #'word': word, |
| 72 | - #'lemma': lemma, | 61 | + 'lemma': lemma, |
| 73 | - #'postag': postag, | 62 | + 'postag': postag, |
| 74 | - 'lemma[-3:]': lemma[-3:], | ||
| 75 | - 'lemma[-2:]': lemma[-2:], | ||
| 76 | - 'lemma[-1:]': lemma[-1:], | ||
| 77 | - 'lemma[+3:]': lemma[:3], | ||
| 78 | - 'lemma[+2:]': lemma[:2], | ||
| 79 | - 'lemma[+1:]': lemma[:1], | ||
| 80 | - #'word[:3]': word[:3], | ||
| 81 | - #'word[:2]': word[:2], | ||
| 82 | - #'word[:1]': word[:1], | ||
| 83 | - #'endsConLow()={}'.format(endsConLow(word)): endsConLow(word), | ||
| 84 | } | 63 | } |
| 85 | if i > 0: | 64 | if i > 0: |
| 86 | listElem = sent[i - 1].split('|') | 65 | listElem = sent[i - 1].split('|') |
| 87 | - word1 = listElem[0] | 66 | + #word1 = listElem[0] |
| 88 | lemma1 = listElem[1] | 67 | lemma1 = listElem[1] |
| 89 | postag1 = listElem[2] | 68 | postag1 = listElem[2] |
| 90 | features.update({ | 69 | features.update({ |
| ... | @@ -95,7 +74,7 @@ def word2features(sent, i): | ... | @@ -95,7 +74,7 @@ def word2features(sent, i): |
| 95 | 74 | ||
| 96 | if i < len(sent) - 1: | 75 | if i < len(sent) - 1: |
| 97 | listElem = sent[i + 1].split('|') | 76 | listElem = sent[i + 1].split('|') |
| 98 | - word1 = listElem[0] | 77 | + #word1 = listElem[0] |
| 99 | lemma1 = listElem[1] | 78 | lemma1 = listElem[1] |
| 100 | postag1 = listElem[2] | 79 | postag1 = listElem[2] |
| 101 | features.update({ | 80 | features.update({ |
| ... | @@ -103,53 +82,8 @@ def word2features(sent, i): | ... | @@ -103,53 +82,8 @@ def word2features(sent, i): |
| 103 | '+1:lemma': lemma1, | 82 | '+1:lemma': lemma1, |
| 104 | '+1:postag': postag1, | 83 | '+1:postag': postag1, |
| 105 | }) | 84 | }) |
| 106 | - | ||
| 107 | - ''' | ||
| 108 | - if i > 1: | ||
| 109 | - listElem = sent[i - 2].split('|') | ||
| 110 | - word2 = listElem[0] | ||
| 111 | - lemma2 = listElem[1] | ||
| 112 | - postag2 = listElem[2] | ||
| 113 | - features.update({ | ||
| 114 | - '-2:word': word2, | ||
| 115 | - '-2:lemma': lemma2, | ||
| 116 | - }) | ||
| 117 | - | ||
| 118 | - if i < len(sent) - 2: | ||
| 119 | - listElem = sent[i + 2].split('|') | ||
| 120 | - word2 = listElem[0] | ||
| 121 | - lemma2 = listElem[1] | ||
| 122 | - postag2 = listElem[2] | ||
| 123 | - features.update({ | ||
| 124 | - '+2:word': word2, | ||
| 125 | - '+2:lemma': lemma2, | ||
| 126 | - }) | ||
| 127 | - | ||
| 128 | - trigrams = False | ||
| 129 | - if trigrams: | ||
| 130 | - if i > 2: | ||
| 131 | - listElem = sent[i - 3].split('|') | ||
| 132 | - word3 = listElem[0] | ||
| 133 | - lemma3 = listElem[1] | ||
| 134 | - postag3 = listElem[2] | ||
| 135 | - features.update({ | ||
| 136 | - '-3:word': word3, | ||
| 137 | - '-3:lemma': lemma3, | ||
| 138 | - }) | ||
| 139 | - | ||
| 140 | - if i < len(sent) - 3: | ||
| 141 | - listElem = sent[i + 3].split('|') | ||
| 142 | - word3 = listElem[0] | ||
| 143 | - lemma3 = listElem[1] | ||
| 144 | - postag3 = listElem[2] | ||
| 145 | - features.update({ | ||
| 146 | - '+3:word': word3, | ||
| 147 | - '+3:lemma': lemma3, | ||
| 148 | - }) | ||
| 149 | - ''' | ||
| 150 | return features | 85 | return features |
| 151 | 86 | ||
| 152 | - | ||
| 153 | def sent2features(sent): | 87 | def sent2features(sent): |
| 154 | return [word2features(sent, i) for i in range(len(sent))] | 88 | return [word2features(sent, i) for i in range(len(sent))] |
| 155 | 89 | ... | ... |
training_validation_v3.py
0 → 100644
| 1 | +# -*- coding: UTF-8 -*- | ||
| 2 | + | ||
| 3 | +import os | ||
| 4 | +from itertools import chain | ||
| 5 | +from optparse import OptionParser | ||
| 6 | +from time import time | ||
| 7 | +from collections import Counter | ||
| 8 | +import re | ||
| 9 | + | ||
| 10 | +import nltk | ||
| 11 | +import sklearn | ||
| 12 | +import scipy.stats | ||
| 13 | +import sys | ||
| 14 | + | ||
| 15 | +from sklearn.externals import joblib | ||
| 16 | +from sklearn.metrics import make_scorer | ||
| 17 | +from sklearn.cross_validation import cross_val_score | ||
| 18 | +from sklearn.grid_search import RandomizedSearchCV | ||
| 19 | + | ||
| 20 | +import sklearn_crfsuite | ||
| 21 | +from sklearn_crfsuite import scorers | ||
| 22 | +from sklearn_crfsuite import metrics | ||
| 23 | + | ||
| 24 | +from nltk.corpus import stopwords | ||
| 25 | + | ||
| 26 | + | ||
| 27 | +# Objective | ||
| 28 | +# Training and evaluation of CRFs with sklearn-crfsuite. | ||
| 29 | +# | ||
| 30 | +# Input parameters | ||
| 31 | +# --inputPath=PATH Path of training and test data set | ||
| 32 | +# --trainingFile File with training data set | ||
| 33 | +# --testFile File with test data set | ||
| 34 | +# --outputPath=PATH Output path to place output files | ||
| 35 | +# --filteringStopWords Filtering stop words | ||
| 36 | +# --excludeSymbols Filtering punctuation marks | ||
| 37 | + | ||
| 38 | +# Output | ||
| 39 | +# 1) Best model | ||
| 40 | + | ||
| 41 | +# Examples | ||
| 42 | +# python3.4 training-validation-v1.py | ||
| 43 | +# --inputPath /export/space1/users/compu2/bionlp/conditional-random-fields/data-sets | ||
| 44 | +# --trainingFile training-data-set-70.txt | ||
| 45 | +# --testFile test-data-set-30.txt | ||
| 46 | +# --outputPath /export/space1/users/compu2/bionlp/conditional-random-fields | ||
| 47 | +# python3.4 training-validation-v1.py --inputPath /export/space1/users/compu2/bionlp/conditional-random-fields/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /export/space1/users/compu2/bionlp/conditional-random-fields | ||
| 48 | + | ||
| 49 | +################################# | ||
| 50 | +# FUNCTIONS # | ||
| 51 | +################################# | ||
| 52 | +def endsConLow(word): | ||
| 53 | + miregex = re.compile(r'[^aeiouA-Z0-9]$') | ||
| 54 | + if miregex.search(word): | ||
| 55 | + return True | ||
| 56 | + else: | ||
| 57 | + return False | ||
| 58 | + | ||
| 59 | +def word2features(sent, i): | ||
| 60 | + listElem = sent[i].split('|') | ||
| 61 | + word = listElem[0] | ||
| 62 | + lemma = listElem[1] | ||
| 63 | + postag = listElem[2] | ||
| 64 | + | ||
| 65 | + features = { | ||
| 66 | + # Suffixes | ||
| 67 | + #'word[-3:]': word[-3:], | ||
| 68 | + #'word[-2:]': word[-2:], | ||
| 69 | + #'word[-1:]': word[-1:], | ||
| 70 | + #'word.isupper()': word.isupper(), | ||
| 71 | + #'word': word, | ||
| 72 | + #'lemma': lemma, | ||
| 73 | + #'postag': postag, | ||
| 74 | + 'lemma[-3:]': lemma[-3:], | ||
| 75 | + 'lemma[-2:]': lemma[-2:], | ||
| 76 | + 'lemma[-1:]': lemma[-1:], | ||
| 77 | + 'lemma[+3:]': lemma[:3], | ||
| 78 | + 'lemma[+2:]': lemma[:2], | ||
| 79 | + 'lemma[+1:]': lemma[:1], | ||
| 80 | + #'word[:3]': word[:3], | ||
| 81 | + #'word[:2]': word[:2], | ||
| 82 | + #'word[:1]': word[:1], | ||
| 83 | + #'endsConLow()={}'.format(endsConLow(word)): endsConLow(word), | ||
| 84 | + } | ||
| 85 | + if i > 0: | ||
| 86 | + listElem = sent[i - 1].split('|') | ||
| 87 | + word1 = listElem[0] | ||
| 88 | + lemma1 = listElem[1] | ||
| 89 | + postag1 = listElem[2] | ||
| 90 | + features.update({ | ||
| 91 | + #'-1:word': word1, | ||
| 92 | + '-1:lemma': lemma1, | ||
| 93 | + '-1:postag': postag1, | ||
| 94 | + }) | ||
| 95 | + | ||
| 96 | + if i < len(sent) - 1: | ||
| 97 | + listElem = sent[i + 1].split('|') | ||
| 98 | + word1 = listElem[0] | ||
| 99 | + lemma1 = listElem[1] | ||
| 100 | + postag1 = listElem[2] | ||
| 101 | + features.update({ | ||
| 102 | + #'+1:word': word1, | ||
| 103 | + '+1:lemma': lemma1, | ||
| 104 | + '+1:postag': postag1, | ||
| 105 | + }) | ||
| 106 | + | ||
| 107 | + ''' | ||
| 108 | + if i > 1: | ||
| 109 | + listElem = sent[i - 2].split('|') | ||
| 110 | + word2 = listElem[0] | ||
| 111 | + lemma2 = listElem[1] | ||
| 112 | + postag2 = listElem[2] | ||
| 113 | + features.update({ | ||
| 114 | + '-2:word': word2, | ||
| 115 | + '-2:lemma': lemma2, | ||
| 116 | + }) | ||
| 117 | + | ||
| 118 | + if i < len(sent) - 2: | ||
| 119 | + listElem = sent[i + 2].split('|') | ||
| 120 | + word2 = listElem[0] | ||
| 121 | + lemma2 = listElem[1] | ||
| 122 | + postag2 = listElem[2] | ||
| 123 | + features.update({ | ||
| 124 | + '+2:word': word2, | ||
| 125 | + '+2:lemma': lemma2, | ||
| 126 | + }) | ||
| 127 | + | ||
| 128 | + trigrams = False | ||
| 129 | + if trigrams: | ||
| 130 | + if i > 2: | ||
| 131 | + listElem = sent[i - 3].split('|') | ||
| 132 | + word3 = listElem[0] | ||
| 133 | + lemma3 = listElem[1] | ||
| 134 | + postag3 = listElem[2] | ||
| 135 | + features.update({ | ||
| 136 | + '-3:word': word3, | ||
| 137 | + '-3:lemma': lemma3, | ||
| 138 | + }) | ||
| 139 | + | ||
| 140 | + if i < len(sent) - 3: | ||
| 141 | + listElem = sent[i + 3].split('|') | ||
| 142 | + word3 = listElem[0] | ||
| 143 | + lemma3 = listElem[1] | ||
| 144 | + postag3 = listElem[2] | ||
| 145 | + features.update({ | ||
| 146 | + '+3:word': word3, | ||
| 147 | + '+3:lemma': lemma3, | ||
| 148 | + }) | ||
| 149 | + ''' | ||
| 150 | + return features | ||
| 151 | + | ||
| 152 | + | ||
| 153 | +def sent2features(sent): | ||
| 154 | + return [word2features(sent, i) for i in range(len(sent))] | ||
| 155 | + | ||
| 156 | + | ||
| 157 | +def sent2labels(sent): | ||
| 158 | + return [elem.split('|')[3] for elem in sent] | ||
| 159 | + | ||
| 160 | + | ||
| 161 | +def sent2tokens(sent): | ||
| 162 | + return [token for token, postag, label in sent] | ||
| 163 | + | ||
| 164 | + | ||
| 165 | +def print_transitions(trans_features, f): | ||
| 166 | + for (label_from, label_to), weight in trans_features: | ||
| 167 | + f.write("{:6} -> {:7} {:0.6f}\n".format(label_from, label_to, weight)) | ||
| 168 | + | ||
| 169 | + | ||
| 170 | +def print_state_features(state_features, f): | ||
| 171 | + for (attr, label), weight in state_features: | ||
| 172 | + f.write("{:0.6f} {:8} {}\n".format(weight, label, attr.encode("utf-8"))) | ||
| 173 | + | ||
| 174 | + | ||
| 175 | +__author__ = 'CMendezC' | ||
| 176 | + | ||
| 177 | +########################################## | ||
| 178 | +# MAIN PROGRAM # | ||
| 179 | +########################################## | ||
| 180 | + | ||
| 181 | +if __name__ == "__main__": | ||
| 182 | + # Defining parameters | ||
| 183 | + parser = OptionParser() | ||
| 184 | + parser.add_option("--inputPath", dest="inputPath", | ||
| 185 | + help="Path of training data set", metavar="PATH") | ||
| 186 | + parser.add_option("--outputPath", dest="outputPath", | ||
| 187 | + help="Output path to place output files", | ||
| 188 | + metavar="PATH") | ||
| 189 | + parser.add_option("--trainingFile", dest="trainingFile", | ||
| 190 | + help="File with training data set", metavar="FILE") | ||
| 191 | + parser.add_option("--testFile", dest="testFile", | ||
| 192 | + help="File with test data set", metavar="FILE") | ||
| 193 | + parser.add_option("--excludeStopWords", default=False, | ||
| 194 | + action="store_true", dest="excludeStopWords", | ||
| 195 | + help="Exclude stop words") | ||
| 196 | + parser.add_option("--excludeSymbols", default=False, | ||
| 197 | + action="store_true", dest="excludeSymbols", | ||
| 198 | + help="Exclude punctuation marks") | ||
| 199 | + | ||
| 200 | + (options, args) = parser.parse_args() | ||
| 201 | + if len(args) > 0: | ||
| 202 | + parser.error("Any parameter given.") | ||
| 203 | + sys.exit(1) | ||
| 204 | + | ||
| 205 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
| 206 | + print("Path of training data set: " + options.inputPath) | ||
| 207 | + print("File with training data set: " + str(options.trainingFile)) | ||
| 208 | + print("Path of test data set: " + options.inputPath) | ||
| 209 | + print("File with test data set: " + str(options.testFile)) | ||
| 210 | + print("Exclude stop words: " + str(options.excludeStopWords)) | ||
| 211 | + symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{', | ||
| 212 | + '}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...'] | ||
| 213 | + #print("Exclude symbols " + str(symbols) + ': ' + str(options.excludeSymbols)) | ||
| 214 | + print("Exclude symbols: " + str(options.excludeSymbols)) | ||
| 215 | + | ||
| 216 | + print('-------------------------------- PROCESSING --------------------------------') | ||
| 217 | + print('Reading corpus...') | ||
| 218 | + t0 = time() | ||
| 219 | + | ||
| 220 | + sentencesTrainingData = [] | ||
| 221 | + sentencesTestData = [] | ||
| 222 | + | ||
| 223 | + stopwords = [word for word in stopwords.words('english')] | ||
| 224 | + | ||
| 225 | + with open(os.path.join(options.inputPath, options.trainingFile), "r") as iFile: | ||
| 226 | + for line in iFile.readlines(): | ||
| 227 | + listLine = [] | ||
| 228 | + line = line.strip('\n') | ||
| 229 | + for token in line.split(): | ||
| 230 | + if options.excludeStopWords: | ||
| 231 | + listToken = token.split('|') | ||
| 232 | + lemma = listToken[1] | ||
| 233 | + if lemma in stopwords: | ||
| 234 | + continue | ||
| 235 | + if options.excludeSymbols: | ||
| 236 | + listToken = token.split('|') | ||
| 237 | + lemma = listToken[1] | ||
| 238 | + if lemma in symbols: | ||
| 239 | + continue | ||
| 240 | + listLine.append(token) | ||
| 241 | + sentencesTrainingData.append(listLine) | ||
| 242 | + print(" Sentences training data: " + str(len(sentencesTrainingData))) | ||
| 243 | + | ||
| 244 | + with open(os.path.join(options.inputPath, options.testFile), "r") as iFile: | ||
| 245 | + for line in iFile.readlines(): | ||
| 246 | + listLine = [] | ||
| 247 | + line = line.strip('\n') | ||
| 248 | + for token in line.split(): | ||
| 249 | + if options.excludeStopWords: | ||
| 250 | + listToken = token.split('|') | ||
| 251 | + lemma = listToken[1] | ||
| 252 | + if lemma in stopwords: | ||
| 253 | + continue | ||
| 254 | + if options.excludeSymbols: | ||
| 255 | + listToken = token.split('|') | ||
| 256 | + lemma = listToken[1] | ||
| 257 | + if lemma in symbols: | ||
| 258 | + continue | ||
| 259 | + listLine.append(token) | ||
| 260 | + sentencesTestData.append(listLine) | ||
| 261 | + print(" Sentences test data: " + str(len(sentencesTestData))) | ||
| 262 | + | ||
| 263 | + print("Reading corpus done in: %fs" % (time() - t0)) | ||
| 264 | + | ||
| 265 | + #print(sent2features(sentencesTrainingData[0])[0]) | ||
| 266 | + #print(sent2features(sentencesTestData[0])[0]) | ||
| 267 | + t0 = time() | ||
| 268 | + | ||
| 269 | + X_train = [sent2features(s) for s in sentencesTrainingData] | ||
| 270 | + y_train = [sent2labels(s) for s in sentencesTrainingData] | ||
| 271 | + | ||
| 272 | + X_test = [sent2features(s) for s in sentencesTestData] | ||
| 273 | + # print X_test | ||
| 274 | + y_test = [sent2labels(s) for s in sentencesTestData] | ||
| 275 | + | ||
| 276 | + # Fixed parameters | ||
| 277 | + # crf = sklearn_crfsuite.CRF( | ||
| 278 | + # algorithm='lbfgs', | ||
| 279 | + # c1=0.1, | ||
| 280 | + # c2=0.1, | ||
| 281 | + # max_iterations=100, | ||
| 282 | + # all_possible_transitions=True | ||
| 283 | + # ) | ||
| 284 | + | ||
| 285 | + # Hyperparameter Optimization | ||
| 286 | + crf = sklearn_crfsuite.CRF( | ||
| 287 | + algorithm='lbfgs', | ||
| 288 | + max_iterations=100, | ||
| 289 | + all_possible_transitions=True | ||
| 290 | + ) | ||
| 291 | + params_space = { | ||
| 292 | + 'c1': scipy.stats.expon(scale=0.5), | ||
| 293 | + 'c2': scipy.stats.expon(scale=0.05), | ||
| 294 | + } | ||
| 295 | + | ||
| 296 | + # Original: labels = list(crf.classes_) | ||
| 297 | + # Original: labels.remove('O') | ||
| 298 | + labels = list(['GENE']) | ||
| 299 | + | ||
| 300 | + # use the same metric for evaluation | ||
| 301 | + f1_scorer = make_scorer(metrics.flat_f1_score, | ||
| 302 | + average='weighted', labels=labels) | ||
| 303 | + | ||
| 304 | + # search | ||
| 305 | + rs = RandomizedSearchCV(crf, params_space, | ||
| 306 | + cv=10, | ||
| 307 | + verbose=3, | ||
| 308 | + n_jobs=-1, | ||
| 309 | + n_iter=20, | ||
| 310 | + # n_iter=50, | ||
| 311 | + scoring=f1_scorer) | ||
| 312 | + rs.fit(X_train, y_train) | ||
| 313 | + | ||
| 314 | + # Fixed parameters | ||
| 315 | + # crf.fit(X_train, y_train) | ||
| 316 | + | ||
| 317 | + # Best hiperparameters | ||
| 318 | + # crf = rs.best_estimator_ | ||
| 319 | + nameReport = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 320 | + options.excludeSymbols) + '.txt') | ||
| 321 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="w") as oFile: | ||
| 322 | + oFile.write("********** TRAINING AND TESTING REPORT **********\n") | ||
| 323 | + oFile.write("Training file: " + options.trainingFile + '\n') | ||
| 324 | + oFile.write('\n') | ||
| 325 | + oFile.write('best params:' + str(rs.best_params_) + '\n') | ||
| 326 | + oFile.write('best CV score:' + str(rs.best_score_) + '\n') | ||
| 327 | + oFile.write('model size: {:0.2f}M\n'.format(rs.best_estimator_.size_ / 1000000)) | ||
| 328 | + | ||
| 329 | + print("Training done in: %fs" % (time() - t0)) | ||
| 330 | + t0 = time() | ||
| 331 | + | ||
| 332 | + # Update best crf | ||
| 333 | + crf = rs.best_estimator_ | ||
| 334 | + | ||
| 335 | + # Saving model | ||
| 336 | + print(" Saving training model...") | ||
| 337 | + t1 = time() | ||
| 338 | + nameModel = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 339 | + options.excludeSymbols) + '.mod') | ||
| 340 | + joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel)) | ||
| 341 | + print(" Saving training model done in: %fs" % (time() - t1)) | ||
| 342 | + | ||
| 343 | + # Evaluation against test data | ||
| 344 | + y_pred = crf.predict(X_test) | ||
| 345 | + print("*********************************") | ||
| 346 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 347 | + options.excludeSymbols) + '.txt') | ||
| 348 | + with open(os.path.join(options.outputPath, "reports", "y_pred_" + name), "w") as oFile: | ||
| 349 | + for y in y_pred: | ||
| 350 | + oFile.write(str(y) + '\n') | ||
| 351 | + | ||
| 352 | + print("*********************************") | ||
| 353 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
| 354 | + options.excludeSymbols) + '.txt') | ||
| 355 | + with open(os.path.join(options.outputPath, "reports", "y_test_" + name), "w") as oFile: | ||
| 356 | + for y in y_test: | ||
| 357 | + oFile.write(str(y) + '\n') | ||
| 358 | + | ||
| 359 | + print("Prediction done in: %fs" % (time() - t0)) | ||
| 360 | + | ||
| 361 | + # labels = list(crf.classes_) | ||
| 362 | + # labels.remove('O') | ||
| 363 | + | ||
| 364 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="a") as oFile: | ||
| 365 | + oFile.write('\n') | ||
| 366 | + oFile.write("Flat F1: " + str(metrics.flat_f1_score(y_test, y_pred, average='weighted', labels=labels))) | ||
| 367 | + oFile.write('\n') | ||
| 368 | + # labels = list(crf.classes_) | ||
| 369 | + sorted_labels = sorted( | ||
| 370 | + labels, | ||
| 371 | + key=lambda name: (name[1:], name[0]) | ||
| 372 | + ) | ||
| 373 | + oFile.write(metrics.flat_classification_report( | ||
| 374 | + y_test, y_pred, labels=sorted_labels, digits=3 | ||
| 375 | + )) | ||
| 376 | + oFile.write('\n') | ||
| 377 | + | ||
| 378 | + oFile.write("\nTop likely transitions:\n") | ||
| 379 | + print_transitions(Counter(crf.transition_features_).most_common(50), oFile) | ||
| 380 | + oFile.write('\n') | ||
| 381 | + | ||
| 382 | + oFile.write("\nTop unlikely transitions:\n") | ||
| 383 | + print_transitions(Counter(crf.transition_features_).most_common()[-50:], oFile) | ||
| 384 | + oFile.write('\n') | ||
| 385 | + | ||
| 386 | + oFile.write("\nTop positive:\n") | ||
| 387 | + print_state_features(Counter(crf.state_features_).most_common(200), oFile) | ||
| 388 | + oFile.write('\n') | ||
| 389 | + | ||
| 390 | + oFile.write("\nTop negative:\n") | ||
| 391 | + print_state_features(Counter(crf.state_features_).most_common()[-200:], oFile) | ||
| 392 | + oFile.write('\n') |
-
Please register or login to post a comment