Showing
5 changed files
with
1092 additions
and
1 deletions
CRF/bin/label-split_training_test_v2.py
0 → 100644
1 | +#!/bin/python3 | ||
2 | +from optparse import OptionParser | ||
3 | +import re | ||
4 | +import os | ||
5 | +import random | ||
6 | + | ||
7 | + | ||
8 | +# Objective | ||
9 | +# Labaled separated by '|' and split 70/30 sentences on training and tets files from CoreNLP-tagging | ||
10 | +# make data sets using only sentences with at least one true-tag | ||
11 | +# | ||
12 | +# Input parameters | ||
13 | +# --inputPath=PATH Path of inputfile | ||
14 | +# --outputPath=PATH Path to place output files | ||
15 | +# --trainingFile=testFile Output training data set | ||
16 | +# --testFile=testFile Output test data set | ||
17 | +# | ||
18 | +# Output | ||
19 | +# training and test data set | ||
20 | +# | ||
21 | +# Examples | ||
22 | +# python label-split_training_test_v2.py | ||
23 | +# --inputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CoreNLP/output/ | ||
24 | +# --inputFile sentences.tsv_pakal_.conll | ||
25 | +# --trainingFile training-data-set-70.txt | ||
26 | +# --testFile test-data-set-30.txt | ||
27 | +# --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets | ||
28 | +# | ||
29 | +# | ||
30 | +# python label-split_training_test_v2.py --inputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CoreNLP/output/ --inputFile raw-metadata-senteneces.txt.conll --trainingFile training-data-set-70_v2.txt --testFile test-data-set-30_v2.txt --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets | ||
31 | + | ||
32 | + | ||
33 | +########################################## | ||
34 | +# MAIN PROGRAM # | ||
35 | +########################################## | ||
36 | + | ||
37 | +if __name__ == "__main__": | ||
38 | + # Defining parameters | ||
39 | + parser = OptionParser() | ||
40 | + parser.add_option("--inputPath", dest="inputPath", | ||
41 | + help="Path of output from CoreNLP", metavar="PATH") | ||
42 | + parser.add_option("--outputPath", dest="outputPath", | ||
43 | + help="Output path to place output files", | ||
44 | + metavar="PATH") | ||
45 | + parser.add_option("--inputFile", dest="inputFile", | ||
46 | + help="File with CoreNLP-tagging sentences", metavar="FILE") | ||
47 | + parser.add_option("--trainingFile", dest="trainingFile", | ||
48 | + help="File with training data set", metavar="FILE") | ||
49 | + parser.add_option("--testFile", dest="testFile", | ||
50 | + help="File with test data set", metavar="FILE") | ||
51 | + | ||
52 | + (options, args) = parser.parse_args() | ||
53 | + if len(args) > 0: | ||
54 | + parser.error("Any parameter given.") | ||
55 | + sys.exit(1) | ||
56 | + | ||
57 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
58 | + print("Path of CoreNLP output: " + options.inputPath) | ||
59 | + print("File with CoreNLP-tagging sentences: " + str(options.inputFile)) | ||
60 | + print("Path of training data set: " + options.outputPath) | ||
61 | + print("File with training data set: " + str(options.trainingFile)) | ||
62 | + print("Path of test data set: " + options.outputPath) | ||
63 | + print("File with test data set: " + str(options.testFile)) | ||
64 | + print('-------------------------------- PROCESSING --------------------------------') | ||
65 | + ## begin of tagging | ||
66 | + in_labels = { | ||
67 | + '<Gtype>': 'Gtype', | ||
68 | + '<Gversion>': 'Gversion', | ||
69 | + '<Med>': 'Med', | ||
70 | + '<Phase>': 'Phase', | ||
71 | + '<Supp>': 'Supp', | ||
72 | + '<Technique>': 'Technique', | ||
73 | + '<Temp>': 'Temp', | ||
74 | + '<OD>': 'OD', | ||
75 | + '<Anti>': 'Anti' | ||
76 | + } | ||
77 | + ## End of tagging | ||
78 | + out_labels = { | ||
79 | + '<Air>': 'O', | ||
80 | + '</Air>': 'O', | ||
81 | + '</Gtype>': 'O', | ||
82 | + '</Gversion>': 'O', | ||
83 | + '</Med>': 'O', | ||
84 | + '</Phase>': 'O', | ||
85 | + '<Sample>': 'O', | ||
86 | + '</Sample>': 'O', | ||
87 | + '<Serie>': 'O', | ||
88 | + '</Serie>': 'O', | ||
89 | + '<Strain>': 'O', | ||
90 | + '</Strain>': 'O', | ||
91 | + '<Substrain>': 'O', | ||
92 | + '</Substrain>': 'O', | ||
93 | + '</Supp>': 'O', | ||
94 | + '</Technique>': 'O', | ||
95 | + '</Temp>': 'O', | ||
96 | + '</OD>': 'O', | ||
97 | + '<Agit>': 'O', | ||
98 | + '</Agit>': 'O', | ||
99 | + '<Name>': 'O', | ||
100 | + '</Name>': 'O', | ||
101 | + '<Orgn>': 'O', | ||
102 | + '</Orgn>': 'O', | ||
103 | + '</Anti>': 'O', | ||
104 | + '<Vess>': 'O', | ||
105 | + '</Vess>': 'O'} | ||
106 | + | ||
107 | + # Other label | ||
108 | + flag = 'O' | ||
109 | + # sentences counter | ||
110 | + lista = [] | ||
111 | + #First sentence | ||
112 | + sentence = '' | ||
113 | + with open(os.path.join(options.inputPath, options.inputFile), "r") as input_file: | ||
114 | + for line in input_file: | ||
115 | + if len(line.split('\t')) > 1: | ||
116 | + w = line.split('\t')[1] | ||
117 | + if w in in_labels or w in out_labels: | ||
118 | + #Tagging | ||
119 | + if w in in_labels.keys(): flag = in_labels[w] | ||
120 | + if w in out_labels: flag = out_labels[w] | ||
121 | + else: | ||
122 | + if w == "PGCGROWTHCONDITIONS": | ||
123 | + words = sentence.split(' ') | ||
124 | + #End of sentence | ||
125 | + tags = [tag for tag in words if tag.split('|')[-1] in in_labels.values() ] | ||
126 | + #At least one true-tag on sentence | ||
127 | + if len(tags)> 0: | ||
128 | + lista.append(sentence) | ||
129 | + #New setence | ||
130 | + sentence = '' | ||
131 | + else: | ||
132 | + sentence = sentence + ' ' + ('|'.join(line.split('\t')[1:4])+'|'+flag+' ') | ||
133 | + | ||
134 | + print("Number of sentences: " + str( len(lista) ) ) | ||
135 | + | ||
136 | + | ||
137 | + # Split 70 30 training and test sentences | ||
138 | + trainingIndex = random.sample(range(len(lista)-1), int(len(lista)*.70)) | ||
139 | + testIndex = [n for n in range(len(lista)-1) if n not in trainingIndex] | ||
140 | + | ||
141 | + with open(os.path.join(options.outputPath, options.trainingFile), "w") as oFile: | ||
142 | + Data = [lista[i] for i in trainingIndex] | ||
143 | + oFile.write('\n'.join(Data)) | ||
144 | + | ||
145 | + with open(os.path.join(options.outputPath, options.testFile), "w") as oFile: | ||
146 | + Data = [lista[i] for i in testIndex] | ||
147 | + oFile.write('\n'.join(Data)) | ||
148 | + | ||
149 | + print("==================================END===================================") |
CRF/bin/label-split_training_test_v2.py.save
0 → 100644
1 | +#!/bin/python3 | ||
2 | +from optparse import OptionParser | ||
3 | +import re | ||
4 | +import os | ||
5 | +import random | ||
6 | + | ||
7 | + | ||
8 | +# Objective | ||
9 | +# Labaled separated by '|' and split 70/30 sentences on training and tets files from CoreNLP-tagging | ||
10 | +# make data sets using only sentences with at least one true-tag | ||
11 | +# | ||
12 | +# Input parameters | ||
13 | +# --inputPath=PATH Path of inputfile | ||
14 | +# --outputPath=PATH Path to place output files | ||
15 | +# --trainingFile=testFile Output training data set | ||
16 | +# --testFile=testFile Output test data set | ||
17 | +# | ||
18 | +# Output | ||
19 | +# training and test data set | ||
20 | +# | ||
21 | +# Examples | ||
22 | +# python label-split_training_test_v2.py | ||
23 | +# --inputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CoreNLP/output/ | ||
24 | +# --inputFile sentences.tsv_pakal_.conll | ||
25 | +# --trainingFile training-data-set-70.txt | ||
26 | +# --testFile test-data-set-30.txt | ||
27 | +# --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets | ||
28 | +# | ||
29 | +# | ||
30 | +# python label-split_training_test_v2.py --inputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CoreNLP/output/ --inputFile raw-metadata-senteneces.txt.conll --trainingFile training-data-set-70_v2.txt --testFile test-data-set-30_v2.txt --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets | ||
31 | + | ||
32 | + | ||
33 | +########################################## | ||
34 | +# MAIN PROGRAM # | ||
35 | +########################################## | ||
36 | + | ||
37 | +if __name__ == "__main__": | ||
38 | + # Defining parameters | ||
39 | + parser = OptionParser() | ||
40 | + parser.add_option("--inputPath", dest="inputPath", | ||
41 | + help="Path of output from CoreNLP", metavar="PATH") | ||
42 | + parser.add_option("--outputPath", dest="outputPath", | ||
43 | + help="Output path to place output files", | ||
44 | + metavar="PATH") | ||
45 | + parser.add_option("--inputFile", dest="inputFile", | ||
46 | + help="File with CoreNLP-tagging sentences", metavar="FILE") | ||
47 | + parser.add_option("--trainingFile", dest="trainingFile", | ||
48 | + help="File with training data set", metavar="FILE") | ||
49 | + parser.add_option("--testFile", dest="testFile", | ||
50 | + help="File with test data set", metavar="FILE") | ||
51 | + | ||
52 | + (options, args) = parser.parse_args() | ||
53 | + if len(args) > 0: | ||
54 | + parser.error("Any parameter given.") | ||
55 | + sys.exit(1) | ||
56 | + | ||
57 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
58 | + print("Path of CoreNLP output: " + options.inputPath) | ||
59 | + print("File with CoreNLP-tagging sentences: " + str(options.inputFile)) | ||
60 | + print("Path of training data set: " + options.outputPath) | ||
61 | + print("File with training data set: " + str(options.trainingFile)) | ||
62 | + print("Path of test data set: " + options.outputPath) | ||
63 | + print("File with test data set: " + str(options.testFile)) | ||
64 | + print('-------------------------------- PROCESSING --------------------------------') | ||
65 | + ## begin of tagging | ||
66 | + in_labels = { | ||
67 | + '<Gtype>': 'Gtype', | ||
68 | + '<Gversion>': 'Gversion', | ||
69 | + '<Med>': 'Med', | ||
70 | + '<Phase>': 'Phase', | ||
71 | + '<Supp>': 'Supp', | ||
72 | + '<Technique>': 'Technique', | ||
73 | + '<Temp>': 'Temp', | ||
74 | + '<OD>': 'OD', | ||
75 | + '<Anti>': 'Anti', | ||
76 | + '<Agit>': 'Agit', | ||
77 | + '<Vess>': 'Vess' | ||
78 | + } | ||
79 | + ## End of tagging | ||
80 | + out_labels = { | ||
81 | + '<Air>': 'O', | ||
82 | + '</Air>': 'O', | ||
83 | + '</Gtype>': 'O', | ||
84 | + '</Gversion>': 'O', | ||
85 | + '</Med>': 'O', | ||
86 | + '</Phase>': 'O', | ||
87 | + '<Sample>': 'O', | ||
88 | + '</Sample>': 'O', | ||
89 | + '<Serie>': 'O', | ||
90 | + '</Serie>': 'O', | ||
91 | + '<Strain>': 'O', | ||
92 | + '</Strain>': 'O', | ||
93 | + '<Substrain>': 'O', | ||
94 | + '</Substrain>': 'O', | ||
95 | + '</Supp>': 'O', | ||
96 | + '</Technique>': 'O', | ||
97 | + '</Temp>': 'O', | ||
98 | + '</OD>': 'O', | ||
99 | + '</Anti>': 'O', | ||
100 | + '</Agit>': 'O', | ||
101 | + '<Name>': 'O', | ||
102 | + '</Name>': 'O', | ||
103 | + '<Orgn>': 'O', | ||
104 | + '</Orgn>': 'O', | ||
105 | + '</Vess>': 'O'} | ||
106 | + | ||
107 | + # Other label | ||
108 | + flag = 'O' | ||
109 | + # sentences counter | ||
110 | + n=0 | ||
111 | + lista = [] | ||
112 | + #First sentence | ||
113 | + sentence = '' | ||
114 | + with open(os.path.join(options.inputPath, options.inputFile), "r") as input_file: | ||
115 | + for line in input_file: | ||
116 | + if len(line.split('\t')) > 1: | ||
117 | + w = line.split('\t')[1] | ||
118 | + if w in in_labels or w in out_labels: | ||
119 | + #Tagging | ||
120 | + if w in in_labels.keys(): flag = in_labels[w] | ||
121 | + if w in out_labels: flag = out_labels[w] | ||
122 | + else: | ||
123 | + if w == "PGCGROWTHCONDITIONS": | ||
124 | + words = sentence.split(' ') | ||
125 | + tags = [tag for tag in words if word.split('|')[-1] in in_labels.values() ] | ||
126 | + #At least one true-tag on sentence | ||
127 | + if len(tags)> 0: | ||
128 | + lista.append(sentence) | ||
129 | + #New setence | ||
130 | + sentence = '' | ||
131 | + n=n+1 | ||
132 | + else: | ||
133 | + #Building and save tagging sentence | ||
134 | + sentence = sentence + ' ' + ('|'.join(line.split('\t')[1:4])+'|'+flag+' ') | ||
135 | + | ||
136 | + print("Number of sentences: " + str(n) + str(len(lista)+1)) | ||
137 | + | ||
138 | + | ||
139 | + # Split 70 30 training and test sentences | ||
140 | + trainingIndex = random.sample(range(len(lista)-1), int(len(lista)*.70)) | ||
141 | + testIndex = [n for n in range(len(lista)-1) if n not in trainingIndex] | ||
142 | + | ||
143 | + with open(os.path.join(options.outputPath, options.trainingFile), "w") as oFile: | ||
144 | + Data = [lista[i] for i in trainingIndex] | ||
145 | + oFile.write('\n'.join(Data)) | ||
146 | + | ||
147 | + with open(os.path.join(options.outputPath, options.testFile), "w") as oFile: | ||
148 | + Data = [lista[i] for i in testIndex] | ||
149 | + oFile.write('\n'.join(Data)) | ||
150 | + | ||
151 | + print("==================================END===================================") |
... | @@ -299,7 +299,7 @@ if __name__ == "__main__": | ... | @@ -299,7 +299,7 @@ if __name__ == "__main__": |
299 | 299 | ||
300 | # Original: labels = list(crf.classes_) | 300 | # Original: labels = list(crf.classes_) |
301 | # Original: labels.remove('O') | 301 | # Original: labels.remove('O') |
302 | - labels = list(['Air', 'Gtype', 'Gversion', 'Med', 'Phase', 'Supp', 'Technique', 'Temp', 'OD', 'Anti', 'Agit', 'Vess']) | 302 | + labels = list(['Gtype', 'Gversion', 'Med', 'Phase', 'Supp', 'Technique', 'Temp', 'OD', 'Anti']) |
303 | 303 | ||
304 | # use the same metric for evaluation | 304 | # use the same metric for evaluation |
305 | f1_scorer = make_scorer(metrics.flat_f1_score, | 305 | f1_scorer = make_scorer(metrics.flat_f1_score, | ... | ... |
CRF/bin/training_validation_v4.py
0 → 100644
1 | +# -*- coding: UTF-8 -*- | ||
2 | + | ||
3 | +import os | ||
4 | +from itertools import chain | ||
5 | +from optparse import OptionParser | ||
6 | +from time import time | ||
7 | +from collections import Counter | ||
8 | +import re | ||
9 | + | ||
10 | +import nltk | ||
11 | +import sklearn | ||
12 | +import scipy.stats | ||
13 | +import sys | ||
14 | + | ||
15 | +from sklearn.externals import joblib | ||
16 | +from sklearn.metrics import make_scorer | ||
17 | +from sklearn.cross_validation import cross_val_score | ||
18 | +from sklearn.grid_search import RandomizedSearchCV | ||
19 | + | ||
20 | +import sklearn_crfsuite | ||
21 | +from sklearn_crfsuite import scorers | ||
22 | +from sklearn_crfsuite import metrics | ||
23 | + | ||
24 | +from nltk.corpus import stopwords | ||
25 | + | ||
26 | + | ||
27 | +# Objective | ||
28 | +# Training and evaluation of CRFs with sklearn-crfsuite. | ||
29 | +# | ||
30 | +# Input parameters | ||
31 | +# --inputPath=PATH Path of training and test data set | ||
32 | +# --trainingFile File with training data set | ||
33 | +# --testFile File with test data set | ||
34 | +# --outputPath=PATH Output path to place output files | ||
35 | + | ||
36 | +# Output | ||
37 | +# 1) Best model | ||
38 | + | ||
39 | +# Examples | ||
40 | +# python training_validation_v3.py | ||
41 | +# --inputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets | ||
42 | +# --trainingFile training-data-set-70.txt | ||
43 | +# --testFile test-data-set-30.txt | ||
44 | +# --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/ | ||
45 | +# python3.4 training-validation_v3.py --inputPatTH /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/ | ||
46 | + | ||
47 | +################################# | ||
48 | +# FUNCTIONS # | ||
49 | +################################# | ||
50 | + | ||
51 | +def isGreek(word): | ||
52 | + alphabet = ['Α','Β','Γ','Δ','Ε','Ζ','Η','Θ','Ι','Κ','Λ','Μ','Ν','Ξ','Ο','Π','Ρ','Σ','Τ','Υ','Φ','Χ','Ψ','Ω', | ||
53 | + 'α','β','γ','δ','ε','ζ','η','θ','ι','κ','λ','μ','ν','ξ','ο','π','ρ','ς','σ','τ','υ','φ','χ','ψ','ω'] | ||
54 | + if word in alphabet: | ||
55 | + return True | ||
56 | + else: | ||
57 | + return False | ||
58 | + | ||
59 | +def word2features(sent, i): | ||
60 | + listElem = sent[i].split('|') | ||
61 | + word = listElem[0] | ||
62 | + lemma = listElem[1] | ||
63 | + postag = listElem[2] | ||
64 | + | ||
65 | + features = { | ||
66 | + # Suffixes | ||
67 | + #'word[-3:]': word[-3:], | ||
68 | + #'word[-2:]': word[-2:], | ||
69 | + #'word[-1:]': word[-1:], | ||
70 | + #'word.isupper()': word.isupper(), | ||
71 | + 'word': word, | ||
72 | + 'lemma': lemma, | ||
73 | + #'postag': postag, | ||
74 | + #'lemma[-3:]': lemma[-3:], | ||
75 | + #'lemma[-2:]': lemma[-2:], | ||
76 | + #'lemma[-1:]': lemma[-1:], | ||
77 | + #'lemma[+3:]': lemma[:3], | ||
78 | + #'lemma[+2:]': lemma[:2], | ||
79 | + #'lemma[+1:]': lemma[:1], | ||
80 | + #'word[:3]': word[:3], | ||
81 | + #'word[:2]': word[:2], | ||
82 | + #'word[:1]': word[:1], | ||
83 | + #'endsConLow()={}'.format(endsConLow(word)): endsConLow(word), | ||
84 | + 'isNumber()': word.isdigit(), | ||
85 | + 'isGreek(){}'.format(isGreek(word)): isGreek(word), | ||
86 | + 'isupper()' : word.isupper(), | ||
87 | + 'islower()' : word.islower() | ||
88 | + } | ||
89 | + if i > 0: | ||
90 | + listElem = sent[i - 1].split('|') | ||
91 | + word1 = listElem[0] | ||
92 | + lemma1 = listElem[1] | ||
93 | + postag1 = listElem[2] | ||
94 | + features.update({ | ||
95 | + #'-1:word': word1, | ||
96 | + '-1:lemma': lemma1, | ||
97 | + '-1:postag': postag1, | ||
98 | + }) | ||
99 | + | ||
100 | + if i < len(sent) - 1: | ||
101 | + listElem = sent[i + 1].split('|') | ||
102 | + #word1 = listElem[0] | ||
103 | + lemma1 = listElem[1] | ||
104 | + postag1 = listElem[2] | ||
105 | + features.update({ | ||
106 | + #'+1:word': word1, | ||
107 | + '+1:lemma': lemma1, | ||
108 | + '+1:postag': postag1, | ||
109 | + }) | ||
110 | + | ||
111 | + ''' | ||
112 | + if i > 1: | ||
113 | + listElem = sent[i - 2].split('|') | ||
114 | + word2 = listElem[0] | ||
115 | + lemma2 = listElem[1] | ||
116 | + postag2 = listElem[2] | ||
117 | + features.update({ | ||
118 | + '-2:word': word2, | ||
119 | + '-2:lemma': lemma2, | ||
120 | + }) | ||
121 | + | ||
122 | + if i < len(sent) - 2: | ||
123 | + listElem = sent[i + 2].split('|') | ||
124 | + word2 = listElem[0] | ||
125 | + lemma2 = listElem[1] | ||
126 | + postag2 = listElem[2] | ||
127 | + features.update({ | ||
128 | + '+2:word': word2, | ||
129 | + '+2:lemma': lemma2, | ||
130 | + }) | ||
131 | + | ||
132 | + trigrams = False | ||
133 | + if trigrams: | ||
134 | + if i > 2: | ||
135 | + listElem = sent[i - 3].split('|') | ||
136 | + word3 = listElem[0] | ||
137 | + lemma3 = listElem[1] | ||
138 | + postag3 = listElem[2] | ||
139 | + features.update({ | ||
140 | + '-3:word': word3, | ||
141 | + '-3:lemma': lemma3, | ||
142 | + }) | ||
143 | + | ||
144 | + if i < len(sent) - 3: | ||
145 | + listElem = sent[i + 3].split('|') | ||
146 | + word3 = listElem[0] | ||
147 | + lemma3 = listElem[1] | ||
148 | + postag3 = listElem[2] | ||
149 | + features.update({ | ||
150 | + '+3:word': word3, | ||
151 | + '+3:lemma': lemma3, | ||
152 | + }) | ||
153 | + ''' | ||
154 | + return features | ||
155 | + | ||
156 | + | ||
157 | +def sent2features(sent): | ||
158 | + return [word2features(sent, i) for i in range(len(sent))] | ||
159 | + | ||
160 | + | ||
161 | +def sent2labels(sent): | ||
162 | + return [elem.split('|')[3] for elem in sent] | ||
163 | + | ||
164 | + | ||
165 | +def sent2tokens(sent): | ||
166 | + return [token for token, postag, label in sent] | ||
167 | + | ||
168 | + | ||
169 | +def print_transitions(trans_features, f): | ||
170 | + for (label_from, label_to), weight in trans_features: | ||
171 | + f.write("{:6} -> {:7} {:0.6f}\n".format(label_from, label_to, weight)) | ||
172 | + | ||
173 | + | ||
174 | +def print_state_features(state_features, f): | ||
175 | + for (attr, label), weight in state_features: | ||
176 | + f.write("{:0.6f} {:8} {}\n".format(weight, label, attr.encode("utf-8"))) | ||
177 | + | ||
178 | + | ||
179 | +__author__ = 'CMendezC' | ||
180 | + | ||
181 | +########################################## | ||
182 | +# MAIN PROGRAM # | ||
183 | +########################################## | ||
184 | + | ||
185 | +if __name__ == "__main__": | ||
186 | + # Defining parameters | ||
187 | + parser = OptionParser() | ||
188 | + parser.add_option("--inputPath", dest="inputPath", | ||
189 | + help="Path of training data set", metavar="PATH") | ||
190 | + parser.add_option("--outputPath", dest="outputPath", | ||
191 | + help="Output path to place output files", | ||
192 | + metavar="PATH") | ||
193 | + parser.add_option("--trainingFile", dest="trainingFile", | ||
194 | + help="File with training data set", metavar="FILE") | ||
195 | + parser.add_option("--testFile", dest="testFile", | ||
196 | + help="File with test data set", metavar="FILE") | ||
197 | + parser.add_option("--excludeStopWords", default=False, | ||
198 | + action="store_true", dest="excludeStopWords", | ||
199 | + help="Exclude stop words") | ||
200 | + parser.add_option("--excludeSymbols", default=False, | ||
201 | + action="store_true", dest="excludeSymbols", | ||
202 | + help="Exclude punctuation marks") | ||
203 | + parser.add_option("--reportFile", dest="reportFile", | ||
204 | + help="Report file", metavar="FILE") | ||
205 | + | ||
206 | + (options, args) = parser.parse_args() | ||
207 | + if len(args) > 0: | ||
208 | + parser.error("Any parameter given.") | ||
209 | + sys.exit(1) | ||
210 | + | ||
211 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
212 | + print("Path of training data set: " + options.inputPath) | ||
213 | + print("File with training data set: " + str(options.trainingFile)) | ||
214 | + print("Path of test data set: " + options.inputPath) | ||
215 | + print("File with test data set: " + str(options.testFile)) | ||
216 | + print("Exclude stop words: " + str(options.excludeStopWords)) | ||
217 | + print("Report file: " + str(options.reportFile)) | ||
218 | + | ||
219 | + symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{', | ||
220 | + '}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...'] | ||
221 | + #print("Exclude symbols " + str(symbols) + ': ' + str(options.excludeSymbols)) | ||
222 | + print("Exclude symbols: " + str(options.excludeSymbols)) | ||
223 | + | ||
224 | + print('-------------------------------- PROCESSING --------------------------------') | ||
225 | + print('Reading corpus...') | ||
226 | + t0 = time() | ||
227 | + | ||
228 | + sentencesTrainingData = [] | ||
229 | + sentencesTestData = [] | ||
230 | + | ||
231 | + stopwords = [word for word in stopwords.words('english')] | ||
232 | + | ||
233 | + with open(os.path.join(options.inputPath, options.trainingFile), "r") as iFile: | ||
234 | + for line in iFile.readlines(): | ||
235 | + listLine = [] | ||
236 | + line = line.strip('\n') | ||
237 | + for token in line.split(): | ||
238 | + if options.excludeStopWords: | ||
239 | + listToken = token.split('|') | ||
240 | + lemma = listToken[1] | ||
241 | + if lemma in stopwords: | ||
242 | + continue | ||
243 | + if options.excludeSymbols: | ||
244 | + listToken = token.split('|') | ||
245 | + lemma = listToken[1] | ||
246 | + if lemma in symbols: | ||
247 | + continue | ||
248 | + listLine.append(token) | ||
249 | + sentencesTrainingData.append(listLine) | ||
250 | + print(" Sentences training data: " + str(len(sentencesTrainingData))) | ||
251 | + | ||
252 | + with open(os.path.join(options.inputPath, options.testFile), "r") as iFile: | ||
253 | + for line in iFile.readlines(): | ||
254 | + listLine = [] | ||
255 | + line = line.strip('\n') | ||
256 | + for token in line.split(): | ||
257 | + if options.excludeStopWords: | ||
258 | + listToken = token.split('|') | ||
259 | + lemma = listToken[1] | ||
260 | + if lemma in stopwords: | ||
261 | + continue | ||
262 | + if options.excludeSymbols: | ||
263 | + listToken = token.split('|') | ||
264 | + lemma = listToken[1] | ||
265 | + if lemma in symbols: | ||
266 | + continue | ||
267 | + listLine.append(token) | ||
268 | + sentencesTestData.append(listLine) | ||
269 | + print(" Sentences test data: " + str(len(sentencesTestData))) | ||
270 | + | ||
271 | + print("Reading corpus done in: %fs" % (time() - t0)) | ||
272 | + | ||
273 | + print(sent2features(sentencesTrainingData[0])[0]) | ||
274 | + print(sent2features(sentencesTestData[0])[0]) | ||
275 | + t0 = time() | ||
276 | + | ||
277 | + X_train = [sent2features(s) for s in sentencesTrainingData] | ||
278 | + y_train = [sent2labels(s) for s in sentencesTrainingData] | ||
279 | + | ||
280 | + X_test = [sent2features(s) for s in sentencesTestData] | ||
281 | + # print X_test | ||
282 | + y_test = [sent2labels(s) for s in sentencesTestData] | ||
283 | + | ||
284 | + # Fixed parameters | ||
285 | + # crf = sklearn_crfsuite.CRF( | ||
286 | + # algorithm='lbfgs', | ||
287 | + # c1=0.1, | ||
288 | + # c2=0.1, | ||
289 | + # max_iterations=100, | ||
290 | + # all_possible_transitions=True | ||
291 | + # ) | ||
292 | + | ||
293 | + # Hyperparameter Optimization | ||
294 | + crf = sklearn_crfsuite.CRF( | ||
295 | + algorithm='lbfgs', | ||
296 | + max_iterations=100, | ||
297 | + all_possible_transitions=True | ||
298 | + ) | ||
299 | + params_space = { | ||
300 | + 'c1': scipy.stats.expon(scale=0.5), | ||
301 | + 'c2': scipy.stats.expon(scale=0.05), | ||
302 | + } | ||
303 | + | ||
304 | + # Original: labels = list(crf.classes_) | ||
305 | + # Original: labels.remove('O') | ||
306 | + labels = list(['Gtype', 'Gversion', 'Med', 'Phase', 'Supp', 'Technique', 'Temp', 'OD', 'Anti']) | ||
307 | + | ||
308 | + # use the same metric for evaluation | ||
309 | + f1_scorer = make_scorer(metrics.flat_f1_score, | ||
310 | + average='weighted', labels=labels) | ||
311 | + | ||
312 | + # search | ||
313 | + rs = RandomizedSearchCV(crf, params_space, | ||
314 | + cv=10, | ||
315 | + verbose=3, | ||
316 | + n_jobs=-1, | ||
317 | + n_iter=20, | ||
318 | + # n_iter=50, | ||
319 | + scoring=f1_scorer) | ||
320 | + rs.fit(X_train, y_train) | ||
321 | + | ||
322 | + # Fixed parameters | ||
323 | + # crf.fit(X_train, y_train) | ||
324 | + | ||
325 | + # Best hiperparameters | ||
326 | + # crf = rs.best_estimator_ | ||
327 | + #nameReport = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str(options.excludeSymbols) + '.txt') | ||
328 | + nameReport = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.reportFile)) | ||
329 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="w") as oFile: | ||
330 | + oFile.write("********** TRAINING AND TESTING REPORT **********\n") | ||
331 | + oFile.write("Training file: " + options.trainingFile + '\n') | ||
332 | + oFile.write('\n') | ||
333 | + oFile.write('best params:' + str(rs.best_params_) + '\n') | ||
334 | + oFile.write('best CV score:' + str(rs.best_score_) + '\n') | ||
335 | + oFile.write('model size: {:0.2f}M\n'.format(rs.best_estimator_.size_ / 1000000)) | ||
336 | + | ||
337 | + print("Training done in: %fs" % (time() - t0)) | ||
338 | + t0 = time() | ||
339 | + | ||
340 | + # Update best crf | ||
341 | + crf = rs.best_estimator_ | ||
342 | + | ||
343 | + # Saving model | ||
344 | + print(" Saving training model...") | ||
345 | + t1 = time() | ||
346 | + nameModel = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
347 | + options.excludeSymbols) + '.mod') | ||
348 | + joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel)) | ||
349 | + print(" Saving training model done in: %fs" % (time() - t1)) | ||
350 | + | ||
351 | + # Evaluation against test data | ||
352 | + y_pred = crf.predict(X_test) | ||
353 | + print("*********************************") | ||
354 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
355 | + options.excludeSymbols) + '.txt') | ||
356 | + with open(os.path.join(options.outputPath, "reports", "y_pred_" + name), "w") as oFile: | ||
357 | + for y in y_pred: | ||
358 | + oFile.write(str(y) + '\n') | ||
359 | + | ||
360 | + print("*********************************") | ||
361 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
362 | + options.excludeSymbols) + '.txt') | ||
363 | + with open(os.path.join(options.outputPath, "reports", "y_test_" + name), "w") as oFile: | ||
364 | + for y in y_test: | ||
365 | + oFile.write(str(y) + '\n') | ||
366 | + | ||
367 | + print("Prediction done in: %fs" % (time() - t0)) | ||
368 | + | ||
369 | + # labels = list(crf.classes_) | ||
370 | + # labels.remove('O') | ||
371 | + | ||
372 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="a") as oFile: | ||
373 | + oFile.write('\n') | ||
374 | + oFile.write("Flat F1: " + str(metrics.flat_f1_score(y_test, y_pred, average='weighted', labels=labels))) | ||
375 | + oFile.write('\n') | ||
376 | + # labels = list(crf.classes_) | ||
377 | + sorted_labels = sorted( | ||
378 | + labels, | ||
379 | + key=lambda name: (name[1:], name[0]) | ||
380 | + ) | ||
381 | + oFile.write(metrics.flat_classification_report( | ||
382 | + y_test, y_pred, labels=sorted_labels, digits=3 | ||
383 | + )) | ||
384 | + oFile.write('\n') | ||
385 | + | ||
386 | + oFile.write("\nTop likely transitions:\n") | ||
387 | + print_transitions(Counter(crf.transition_features_).most_common(50), oFile) | ||
388 | + oFile.write('\n') | ||
389 | + | ||
390 | + oFile.write("\nTop unlikely transitions:\n") | ||
391 | + print_transitions(Counter(crf.transition_features_).most_common()[-50:], oFile) | ||
392 | + oFile.write('\n') | ||
393 | + | ||
394 | + oFile.write("\nTop positive:\n") | ||
395 | + print_state_features(Counter(crf.state_features_).most_common(200), oFile) | ||
396 | + oFile.write('\n') | ||
397 | + | ||
398 | + oFile.write("\nTop negative:\n") | ||
399 | + print_state_features(Counter(crf.state_features_).most_common()[-200:], oFile) | ||
400 | + oFile.write('\n') | ||
401 | + |
CRF/bin/training_validation_v5.py
0 → 100644
1 | +# -*- coding: UTF-8 -*- | ||
2 | + | ||
3 | +import os | ||
4 | +from itertools import chain | ||
5 | +from optparse import OptionParser | ||
6 | +from time import time | ||
7 | +from collections import Counter | ||
8 | +import re | ||
9 | + | ||
10 | +import nltk | ||
11 | +import sklearn | ||
12 | +import scipy.stats | ||
13 | +import sys | ||
14 | + | ||
15 | +from sklearn.externals import joblib | ||
16 | +from sklearn.metrics import make_scorer | ||
17 | +from sklearn.cross_validation import cross_val_score | ||
18 | +from sklearn.grid_search import RandomizedSearchCV | ||
19 | + | ||
20 | +import sklearn_crfsuite | ||
21 | +from sklearn_crfsuite import scorers | ||
22 | +from sklearn_crfsuite import metrics | ||
23 | + | ||
24 | +from nltk.corpus import stopwords | ||
25 | + | ||
26 | + | ||
27 | +# Objective | ||
28 | +# Training and evaluation of CRFs with sklearn-crfsuite. | ||
29 | +# | ||
30 | +# Input parameters | ||
31 | +# --inputPath=PATH Path of training and test data set | ||
32 | +# --trainingFile File with training data set | ||
33 | +# --testFile File with test data set | ||
34 | +# --outputPath=PATH Output path to place output files | ||
35 | +# --reportFile Report Fileneme | ||
36 | + | ||
37 | +# Output | ||
38 | +# 1) Best model | ||
39 | + | ||
40 | +# Examples | ||
41 | +# python training_validation_v5.py | ||
42 | +# --inputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets | ||
43 | +# --trainingFile training-data-set-70.txt | ||
44 | +# --testFile test-data-set-30.txt | ||
45 | +# --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/ | ||
46 | +# --reportFile report_1 | ||
47 | +# python3.4 training-validation_v5.py --inputPatTH /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/GROWTH-CONDITIONS-GEO-EXTRACTION/CRF/ | ||
48 | + | ||
49 | +################################# | ||
50 | +# FUNCTIONS # | ||
51 | +################################# | ||
52 | + | ||
53 | +def isGreek(word): | ||
54 | + alphabet = ['Α','Β','Γ','Δ','Ε','Ζ','Η','Θ','Ι','Κ','Λ','Μ','Ν','Ξ','Ο','Π','Ρ','Σ','Τ','Υ','Φ','Χ','Ψ','Ω', | ||
55 | + 'α','β','γ','δ','ε','ζ','η','θ','ι','κ','λ','μ','ν','ξ','ο','π','ρ','ς','σ','τ','υ','φ','χ','ψ','ω'] | ||
56 | + if word in alphabet: | ||
57 | + return True | ||
58 | + else: | ||
59 | + return False | ||
60 | +def hUpper(word): | ||
61 | + for l in word: | ||
62 | + if l.isupper(): return True | ||
63 | + return False | ||
64 | + | ||
65 | +def hLower(word): | ||
66 | + for l in word: | ||
67 | + if l.islower(): return True | ||
68 | + return False | ||
69 | + | ||
70 | +def hGreek(word): | ||
71 | + for l in word: | ||
72 | + if isGreek(l): return True | ||
73 | + return False | ||
74 | + | ||
75 | + | ||
76 | +def word2features(sent, i, S1, S2): | ||
77 | + listElem = sent[i].split('|') | ||
78 | + word = listElem[0] | ||
79 | + lemma = listElem[1] | ||
80 | + postag = listElem[2] | ||
81 | + ner = listElem[3] | ||
82 | + | ||
83 | + features = { | ||
84 | + #General | ||
85 | + 'lemma': lemma, | ||
86 | + 'postag': postag | ||
87 | + } | ||
88 | + | ||
89 | + if S1: | ||
90 | + #S1 | ||
91 | + features['word']: word | ||
92 | + features['hUpper']: hUpper(word) | ||
93 | + features['hLower']: hUpper(word) | ||
94 | + features['hGreek']: hGreek(word) | ||
95 | + #features['hAlfNum']: hAlfNum(word) | ||
96 | + | ||
97 | + if S2: | ||
98 | + #S2 | ||
99 | + features['isUpper']: word.isupper() | ||
100 | + features['isLower']: word.isLower() | ||
101 | + features['isGreek']: isGreek(word) | ||
102 | + features['isNumber']: word.isdigit() | ||
103 | + | ||
104 | + if i > 0: | ||
105 | + listElem = sent[i - 1].split('|') | ||
106 | + word1 = listElem[0] | ||
107 | + lemma1 = listElem[1] | ||
108 | + postag1 = listElem[2] | ||
109 | + features.update({ | ||
110 | + #Word anterioir | ||
111 | + '-1:word': word1, | ||
112 | + #LemaG posterior | ||
113 | + '-1:lemma': lemma1, | ||
114 | + #PostG posterior | ||
115 | + '-1:postag': postag1, | ||
116 | + }) | ||
117 | + | ||
118 | + if i < len(sent) - 1: | ||
119 | + listElem = sent[i + 1].split('|') | ||
120 | + word1 = listElem[0] | ||
121 | + lemma1 = listElem[1] | ||
122 | + postag1 = listElem[2] | ||
123 | + features.update({ | ||
124 | + #Word anterioir | ||
125 | + '+1:word': word1, | ||
126 | + #LemaG posterior | ||
127 | + '+1:lemma': lemma1, | ||
128 | + #PostG posterior | ||
129 | + '+1:postag': postag1, | ||
130 | + }) | ||
131 | + return features | ||
132 | + | ||
133 | + | ||
134 | +def sent2features(sent, S1, S2): | ||
135 | + return [word2features(sent, i, S1, S2) for i in range(len(sent))] | ||
136 | + | ||
137 | + | ||
138 | +def sent2labels(sent): | ||
139 | + return [elem.split('|')[3] for elem in sent] | ||
140 | + | ||
141 | + | ||
142 | +def sent2tokens(sent): | ||
143 | + return [token for token, postag, label in sent] | ||
144 | + | ||
145 | + | ||
146 | +def print_transitions(trans_features, f): | ||
147 | + for (label_from, label_to), weight in trans_features: | ||
148 | + f.write("{:6} -> {:7} {:0.6f}\n".format(label_from, label_to, weight)) | ||
149 | + | ||
150 | + | ||
151 | +def print_state_features(state_features, f): | ||
152 | + for (attr, label), weight in state_features: | ||
153 | + f.write("{:0.6f} {:8} {}\n".format(weight, label, attr.encode("utf-8"))) | ||
154 | + | ||
155 | + | ||
156 | +__author__ = 'CMendezC' | ||
157 | + | ||
158 | +########################################## | ||
159 | +# MAIN PROGRAM # | ||
160 | +########################################## | ||
161 | + | ||
162 | +if __name__ == "__main__": | ||
163 | + # Defining parameters | ||
164 | + parser = OptionParser() | ||
165 | + parser.add_option("--inputPath", dest="inputPath", | ||
166 | + help="Path of training data set", metavar="PATH") | ||
167 | + parser.add_option("--outputPath", dest="outputPath", | ||
168 | + help="Output path to place output files", | ||
169 | + metavar="PATH") | ||
170 | + parser.add_option("--trainingFile", dest="trainingFile", | ||
171 | + help="File with training data set", metavar="FILE") | ||
172 | + parser.add_option("--testFile", dest="testFile", | ||
173 | + help="File with test data set", metavar="FILE") | ||
174 | + parser.add_option("--excludeStopWords", default=False, | ||
175 | + action="store_true", dest="excludeStopWords", | ||
176 | + help="Exclude stop words") | ||
177 | + parser.add_option("--excludeSymbols", default=False, | ||
178 | + action="store_true", dest="excludeSymbols", | ||
179 | + help="Exclude punctuation marks") | ||
180 | + parser.add_option("--reportFile", dest="reportFile", | ||
181 | + help="Report file", metavar="FILE") | ||
182 | + parser.add_option("--S1", default=False, | ||
183 | + action="store_true", dest="S1", | ||
184 | + help="Level specificity") | ||
185 | + parser.add_option("--S2", default=False, | ||
186 | + action="store_true", dest="S2", | ||
187 | + help="Level specificity") | ||
188 | + | ||
189 | + (options, args) = parser.parse_args() | ||
190 | + if len(args) > 0: | ||
191 | + parser.error("Any parameter given.") | ||
192 | + sys.exit(1) | ||
193 | + | ||
194 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
195 | + print("Path of training data set: " + options.inputPath) | ||
196 | + print("File with training data set: " + str(options.trainingFile)) | ||
197 | + print("Path of test data set: " + options.inputPath) | ||
198 | + print("File with test data set: " + str(options.testFile)) | ||
199 | + print("Exclude stop words: " + str(options.excludeStopWords)) | ||
200 | + print("Levels: " + str(options.S1) + " " + str(options.S2)) | ||
201 | + print("Report file: " + str(options.reportFile)) | ||
202 | + | ||
203 | + | ||
204 | + symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{', | ||
205 | + '}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...'] | ||
206 | + print("Exclude symbols: " + str(options.excludeSymbols)) | ||
207 | + | ||
208 | + print('-------------------------------- PROCESSING --------------------------------') | ||
209 | + print('Reading corpus...') | ||
210 | + t0 = time() | ||
211 | + | ||
212 | + sentencesTrainingData = [] | ||
213 | + sentencesTestData = [] | ||
214 | + | ||
215 | + stopwords = [word for word in stopwords.words('english')] | ||
216 | + | ||
217 | + with open(os.path.join(options.inputPath, options.trainingFile), "r") as iFile: | ||
218 | + for line in iFile.readlines(): | ||
219 | + listLine = [] | ||
220 | + line = line.strip('\n') | ||
221 | + for token in line.split(): | ||
222 | + if options.excludeStopWords: | ||
223 | + listToken = token.split('|') | ||
224 | + lemma = listToken[1] | ||
225 | + if lemma in stopwords: | ||
226 | + continue | ||
227 | + if options.excludeSymbols: | ||
228 | + listToken = token.split('|') | ||
229 | + lemma = listToken[1] | ||
230 | + if lemma in symbols: | ||
231 | + continue | ||
232 | + listLine.append(token) | ||
233 | + sentencesTrainingData.append(listLine) | ||
234 | + print(" Sentences training data: " + str(len(sentencesTrainingData))) | ||
235 | + | ||
236 | + with open(os.path.join(options.inputPath, options.testFile), "r") as iFile: | ||
237 | + for line in iFile.readlines(): | ||
238 | + listLine = [] | ||
239 | + line = line.strip('\n') | ||
240 | + for token in line.split(): | ||
241 | + if options.excludeStopWords: | ||
242 | + listToken = token.split('|') | ||
243 | + lemma = listToken[1] | ||
244 | + if lemma in stopwords: | ||
245 | + continue | ||
246 | + if options.excludeSymbols: | ||
247 | + listToken = token.split('|') | ||
248 | + lemma = listToken[1] | ||
249 | + if lemma in symbols: | ||
250 | + continue | ||
251 | + listLine.append(token) | ||
252 | + sentencesTestData.append(listLine) | ||
253 | + print(" Sentences test data: " + str(len(sentencesTestData))) | ||
254 | + | ||
255 | + print("Reading corpus done in: %fs" % (time() - t0)) | ||
256 | + | ||
257 | + if options.S1: S1 = 0 | ||
258 | + else: S1 = 1 | ||
259 | + if options.S2: S2 = 0 | ||
260 | + else: S2 = 1 | ||
261 | + | ||
262 | + print(sent2features(sentencesTrainingData[0], S1, S2)[0]) | ||
263 | + print(sent2features(sentencesTestData[0], S1, S2)[0]) | ||
264 | + t0 = time() | ||
265 | + | ||
266 | + X_train = [sent2features(s, S1, S2) for s in sentencesTrainingData] | ||
267 | + y_train = [sent2labels(s) for s in sentencesTrainingData] | ||
268 | + | ||
269 | + X_test = [sent2features(s, S1, S2) for s in sentencesTestData] | ||
270 | + # print X_test | ||
271 | + y_test = [sent2labels(s) for s in sentencesTestData] | ||
272 | + | ||
273 | + # Fixed parameters | ||
274 | + # crf = sklearn_crfsuite.CRF( | ||
275 | + # algorithm='lbfgs', | ||
276 | + # c1=0.1, | ||
277 | + # c2=0.1, | ||
278 | + # max_iterations=100, | ||
279 | + # all_possible_transitions=True | ||
280 | + # ) | ||
281 | + | ||
282 | + # Hyperparameter Optimization | ||
283 | + crf = sklearn_crfsuite.CRF( | ||
284 | + algorithm='lbfgs', | ||
285 | + max_iterations=100, | ||
286 | + all_possible_transitions=True | ||
287 | + ) | ||
288 | + params_space = { | ||
289 | + 'c1': scipy.stats.expon(scale=0.5), | ||
290 | + 'c2': scipy.stats.expon(scale=0.05), | ||
291 | + } | ||
292 | + | ||
293 | + # Original: labels = list(crf.classes_) | ||
294 | + # Original: labels.remove('O') | ||
295 | + labels = list(['Gtype', 'Gversion', 'Med', 'Phase', 'Supp', 'Technique', 'Temp', 'OD', 'Anti']) | ||
296 | + | ||
297 | + # use the same metric for evaluation | ||
298 | + f1_scorer = make_scorer(metrics.flat_f1_score, | ||
299 | + average='weighted', labels=labels) | ||
300 | + | ||
301 | + # search | ||
302 | + rs = RandomizedSearchCV(crf, params_space, | ||
303 | + cv=10, | ||
304 | + verbose=3, | ||
305 | + n_jobs=-1, | ||
306 | + n_iter=20, | ||
307 | + # n_iter=50, | ||
308 | + scoring=f1_scorer) | ||
309 | + rs.fit(X_train, y_train) | ||
310 | + | ||
311 | + # Fixed parameters | ||
312 | + # crf.fit(X_train, y_train) | ||
313 | + | ||
314 | + # Best hiperparameters | ||
315 | + # crf = rs.best_estimator_ | ||
316 | + nameReport = options.trainingFile.replace('.txt', str(options.reportFile) + '.txt') | ||
317 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="w") as oFile: | ||
318 | + oFile.write("********** TRAINING AND TESTING REPORT **********\n") | ||
319 | + oFile.write("Training file: " + options.trainingFile + '\n') | ||
320 | + oFile.write('\n') | ||
321 | + oFile.write('best params:' + str(rs.best_params_) + '\n') | ||
322 | + oFile.write('best CV score:' + str(rs.best_score_) + '\n') | ||
323 | + oFile.write('model size: {:0.2f}M\n'.format(rs.best_estimator_.size_ / 1000000)) | ||
324 | + | ||
325 | + print("Training done in: %fs" % (time() - t0)) | ||
326 | + t0 = time() | ||
327 | + | ||
328 | + # Update best crf | ||
329 | + crf = rs.best_estimator_ | ||
330 | + | ||
331 | + # Saving model | ||
332 | + print(" Saving training model...") | ||
333 | + t1 = time() | ||
334 | + nameModel = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
335 | + options.excludeSymbols) + '.mod') | ||
336 | + joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel)) | ||
337 | + print(" Saving training model done in: %fs" % (time() - t1)) | ||
338 | + | ||
339 | + # Evaluation against test data | ||
340 | + y_pred = crf.predict(X_test) | ||
341 | + print("*********************************") | ||
342 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
343 | + options.excludeSymbols) + '.txt') | ||
344 | + with open(os.path.join(options.outputPath, "reports", "y_pred_" + name), "w") as oFile: | ||
345 | + for y in y_pred: | ||
346 | + oFile.write(str(y) + '\n') | ||
347 | + | ||
348 | + print("*********************************") | ||
349 | + name = options.trainingFile.replace('.txt', '.fStopWords_' + str(options.excludeStopWords) + '.fSymbols_' + str( | ||
350 | + options.excludeSymbols) + '.txt') | ||
351 | + with open(os.path.join(options.outputPath, "reports", "y_test_" + name), "w") as oFile: | ||
352 | + for y in y_test: | ||
353 | + oFile.write(str(y) + '\n') | ||
354 | + | ||
355 | + print("Prediction done in: %fs" % (time() - t0)) | ||
356 | + | ||
357 | + # labels = list(crf.classes_) | ||
358 | + # labels.remove('O') | ||
359 | + | ||
360 | + with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="a") as oFile: | ||
361 | + oFile.write('\n') | ||
362 | + oFile.write("Flat F1: " + str(metrics.flat_f1_score(y_test, y_pred, average='weighted', labels=labels))) | ||
363 | + oFile.write('\n') | ||
364 | + # labels = list(crf.classes_) | ||
365 | + sorted_labels = sorted( | ||
366 | + labels, | ||
367 | + key=lambda name: (name[1:], name[0]) | ||
368 | + ) | ||
369 | + oFile.write(metrics.flat_classification_report( | ||
370 | + y_test, y_pred, labels=sorted_labels, digits=3 | ||
371 | + )) | ||
372 | + oFile.write('\n') | ||
373 | + | ||
374 | + oFile.write("\nTop likely transitions:\n") | ||
375 | + print_transitions(Counter(crf.transition_features_).most_common(50), oFile) | ||
376 | + oFile.write('\n') | ||
377 | + | ||
378 | + oFile.write("\nTop unlikely transitions:\n") | ||
379 | + print_transitions(Counter(crf.transition_features_).most_common()[-50:], oFile) | ||
380 | + oFile.write('\n') | ||
381 | + | ||
382 | + oFile.write("\nTop positive:\n") | ||
383 | + print_state_features(Counter(crf.state_features_).most_common(200), oFile) | ||
384 | + oFile.write('\n') | ||
385 | + | ||
386 | + oFile.write("\nTop negative:\n") | ||
387 | + print_state_features(Counter(crf.state_features_).most_common()[-200:], oFile) | ||
388 | + oFile.write('\n') | ||
389 | + | ||
390 | + |
-
Please register or login to post a comment