Showing
8 changed files
with
333 additions
and
4 deletions
| ... | @@ -9,9 +9,11 @@ import random | ... | @@ -9,9 +9,11 @@ import random | 
| 9 | # | 9 | # | 
| 10 | # Input parameters | 10 | # Input parameters | 
| 11 | # --inputPath=PATH Path of inputfile | 11 | # --inputPath=PATH Path of inputfile | 
| 12 | +# --inputFile Output CoreNLP file with tagging sentences | ||
| 12 | # --outputPath=PATH Path to place output files | 13 | # --outputPath=PATH Path to place output files | 
| 13 | # --trainingFile=testFile Output training data set | 14 | # --trainingFile=testFile Output training data set | 
| 14 | # --testFile=testFile Output test data set | 15 | # --testFile=testFile Output test data set | 
| 16 | +# --index Select a limit CoreNLP output column | ||
| 15 | # | 17 | # | 
| 16 | # Output | 18 | # Output | 
| 17 | # training and test data set | 19 | # training and test data set | 
| ... | @@ -23,7 +25,7 @@ import random | ... | @@ -23,7 +25,7 @@ import random | 
| 23 | # --trainingFile training-data-set-70_v4.txt | 25 | # --trainingFile training-data-set-70_v4.txt | 
| 24 | # --testFile test-data-set-30_v4.txt | 26 | # --testFile test-data-set-30_v4.txt | 
| 25 | # --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets | 27 | # --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets | 
| 26 | -# | 28 | +# --index 5 | 
| 27 | # | 29 | # | 
| 28 | # python label-split_training_test_v1.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CoreNLP/output/test-trainig --inputFile raw-metadata-senteneces_v2.txt.conll --trainingFile training-data-set-70._v4txt --testFile test-data-set-30_v4.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --index 5 | 30 | # python label-split_training_test_v1.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CoreNLP/output/test-trainig --inputFile raw-metadata-senteneces_v2.txt.conll --trainingFile training-data-set-70._v4txt --testFile test-data-set-30_v4.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --index 5 | 
| 29 | 31 | ... | ... | 
| ... | @@ -11,6 +11,7 @@ from optparse import OptionParser | ... | @@ -11,6 +11,7 @@ from optparse import OptionParser | 
| 11 | # --outputFile=File Output data set | 11 | # --outputFile=File Output data set | 
| 12 | # --minWordLen Minimum word length | 12 | # --minWordLen Minimum word length | 
| 13 | # --minSenLen Minimum sentence length | 13 | # --minSenLen Minimum sentence length | 
| 14 | +# --index Select a limit CoreNLP output column | ||
| 14 | # | 15 | # | 
| 15 | # Output | 16 | # Output | 
| 16 | # Tagged sentences reconstruction | 17 | # Tagged sentences reconstruction | 
| ... | @@ -23,6 +24,7 @@ from optparse import OptionParser | ... | @@ -23,6 +24,7 @@ from optparse import OptionParser | 
| 23 | # --outputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/input | 24 | # --outputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/input | 
| 24 | # --minWordLen 2 | 25 | # --minWordLen 2 | 
| 25 | # --minSenLen 1 | 26 | # --minSenLen 1 | 
| 27 | +# --index 5 | ||
| 26 | # | 28 | # | 
| 27 | #python built_bg_sentences.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CoreNLP/output/annotation --inputFile bg_sentences_v2.txt.ner --outputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/input --outputFile annot-input_bg.txt --minWordLen 2 --minSenLen 1 | 29 | #python built_bg_sentences.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CoreNLP/output/annotation --inputFile bg_sentences_v2.txt.ner --outputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/input --outputFile annot-input_bg.txt --minWordLen 2 --minSenLen 1 | 
| 28 | 30 | ||
| ... | @@ -39,7 +41,7 @@ if __name__ == "__main__": | ... | @@ -39,7 +41,7 @@ if __name__ == "__main__": | 
| 39 | parser.add_option("--outputFile", dest="outputFile", help="File with training data set", metavar="FILE") | 41 | parser.add_option("--outputFile", dest="outputFile", help="File with training data set", metavar="FILE") | 
| 40 | parser.add_option("--minWordLen", dest="wL", help="Minimum word length", type="int") | 42 | parser.add_option("--minWordLen", dest="wL", help="Minimum word length", type="int") | 
| 41 | parser.add_option("--minSenLen", dest="sL", help="Minimum word length", type="int") | 43 | parser.add_option("--minSenLen", dest="sL", help="Minimum word length", type="int") | 
| 42 | - | 44 | + parser.add_option("--index", dest="index",help="Select a limit CoreNLP output column", metavar='N', type=int) | 
| 43 | 45 | ||
| 44 | (options, args) = parser.parse_args() | 46 | (options, args) = parser.parse_args() | 
| 45 | if len(args) > 0: | 47 | if len(args) > 0: | 
| ... | @@ -58,13 +60,16 @@ if __name__ == "__main__": | ... | @@ -58,13 +60,16 @@ if __name__ == "__main__": | 
| 58 | lista = [] | 60 | lista = [] | 
| 59 | #First sentence | 61 | #First sentence | 
| 60 | sentence = '' | 62 | sentence = '' | 
| 63 | + #count | ||
| 64 | + i = 0 | ||
| 61 | with open(os.path.join(options.inputPath, options.inputFile), "r") as input_file: | 65 | with open(os.path.join(options.inputPath, options.inputFile), "r") as input_file: | 
| 62 | for line in input_file: | 66 | for line in input_file: | 
| 63 | if len(line.split('\t')) > 1: | 67 | if len(line.split('\t')) > 1: | 
| 64 | w = line.split('\t')[1] | 68 | w = line.split('\t')[1] | 
| 65 | if w == "PGCGROWTHCONDITIONS": | 69 | if w == "PGCGROWTHCONDITIONS": | 
| 70 | + i = i + 1 | ||
| 66 | if len( sentence.lstrip().split(' ') ) <= options.sL and len(sentence.lstrip().split(' ')[0].split('|')[0]) <= options.wL: | 71 | if len( sentence.lstrip().split(' ') ) <= options.sL and len(sentence.lstrip().split(' ')[0].split('|')[0]) <= options.wL: | 
| 67 | - print( "EXCLUDE: " + sentence.lstrip() ) | 72 | + print( "EXCLUDE: " + str(i) + "line" + sentence.lstrip() ) | 
| 68 | else: | 73 | else: | 
| 69 | #End of sentence | 74 | #End of sentence | 
| 70 | lista.append(sentence.lstrip()) | 75 | lista.append(sentence.lstrip()) | 
| ... | @@ -74,7 +79,7 @@ if __name__ == "__main__": | ... | @@ -74,7 +79,7 @@ if __name__ == "__main__": | 
| 74 | sentence = '' | 79 | sentence = '' | 
| 75 | else: | 80 | else: | 
| 76 | #Building and save tagging sentence | 81 | #Building and save tagging sentence | 
| 77 | - sentence = sentence + ' ' + ('|'.join(line.split('\t')[1:4])) | 82 | + sentence = sentence + ' ' + ('|'.join(line.split('\t')[1:options.index])) | 
| 78 | 83 | ||
| 79 | print("Number of sentences: " + str(n)) | 84 | print("Number of sentences: " + str(n)) | 
| 80 | 85 | ... | ... | 
No preview for this file type
predict-annot/bin/tagging/tagging.py
0 → 100644
| 1 | +# -*- coding: UTF-8 -*- | ||
| 2 | + | ||
| 3 | +import os | ||
| 4 | +from pandas import DataFrame as DF | ||
| 5 | +from optparse import OptionParser | ||
| 6 | +from time import time | ||
| 7 | +from collections import Counter | ||
| 8 | + | ||
| 9 | +import nltk | ||
| 10 | +import sklearn | ||
| 11 | +import scipy.stats | ||
| 12 | +import sys | ||
| 13 | + | ||
| 14 | +import joblib | ||
| 15 | +from sklearn.metrics import make_scorer | ||
| 16 | +from sklearn.model_selection import cross_val_score | ||
| 17 | +from sklearn.model_selection import RandomizedSearchCV | ||
| 18 | + | ||
| 19 | +import sklearn_crfsuite | ||
| 20 | +from sklearn_crfsuite import scorers | ||
| 21 | +from sklearn_crfsuite import metrics | ||
| 22 | + | ||
| 23 | +from nltk.corpus import stopwords | ||
| 24 | + | ||
| 25 | +import training_validation_v14 as training | ||
| 26 | + | ||
| 27 | +#------------------------------------------------------------------------------- | ||
| 28 | +# Objective | ||
| 29 | +# Tagging transformed file with CRF model with sklearn-crfsuite. | ||
| 30 | +# | ||
| 31 | +# Input parameters | ||
| 32 | +# --inputPath=PATH Path of transformed files x|y|z | ||
| 33 | +# --modelPath Path to CRF model | ||
| 34 | +# --modelName Model name | ||
| 35 | +# --outputPath=PATH Output path to place output files | ||
| 36 | +# --filteringStopWords Filtering stop words | ||
| 37 | +# --filterSymbols Filtering punctuation marks | ||
| 38 | + | ||
| 39 | +# Output | ||
| 40 | +# 1) Tagged files in transformed format | ||
| 41 | + | ||
| 42 | +# Examples | ||
| 43 | +# python3 tagging.py | ||
| 44 | +# --inputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/input/ | ||
| 45 | +# --modelName model_Run3_v10_S1_False_S2_True_S3_False_S4_False_Run3_v10.mod | ||
| 46 | +# --modelPath /home/egaytan/automatic-extraction-growth-conditions/CRF/models/ | ||
| 47 | +# --outputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/output/ | ||
| 48 | +# --filterSymbols | ||
| 49 | + | ||
| 50 | +# python3 tagging.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/input/ --modelName model_Run3_v10_S1_False_S2_True_S3_False_S4_False_Run3_v10.mod --modelPath /home/egaytan/automatic-extraction-growth-conditions/CRF/models --outputPath /home/egaytan/automatic-extraction-growth-conditions/predict-annot/output/ --filterSymbols > output_tagging_report.txt | ||
| 51 | + | ||
| 52 | +__author__ = 'egaytan' | ||
| 53 | + | ||
| 54 | +########################################## | ||
| 55 | +# MAIN PROGRAM # | ||
| 56 | +########################################## | ||
| 57 | + | ||
| 58 | +if __name__ == "__main__": | ||
| 59 | + # Defining parameters | ||
| 60 | + parser = OptionParser() | ||
| 61 | + parser.add_option("--inputPath", dest="inputPath", help="Path of training data set", metavar="PATH") | ||
| 62 | + parser.add_option("--outputPath", dest="outputPath", help="Output path to place output files", metavar="PATH") | ||
| 63 | + parser.add_option("--modelPath", dest="modelPath", help="Path to read CRF model", metavar="PATH") | ||
| 64 | + parser.add_option("--modelName", dest="modelName", help="Model name", metavar="TEXT") | ||
| 65 | + parser.add_option("--variant", dest="variant", help="Report file", metavar="FILE") | ||
| 66 | + parser.add_option("--S1", dest="S1", help="General features", action="store_true", default=False) | ||
| 67 | + parser.add_option("--S2", dest="S2", help="Inner/Complete word features", action="store_true", default=False) | ||
| 68 | + parser.add_option("--S3", dest="S3", help="Extended context features", action="store_true", default=False) | ||
| 69 | + parser.add_option("--S4", dest="S4", help="Semantic features", action="store_true", default=False) | ||
| 70 | + parser.add_option("--filterStopWords", dest="filterStopWords", help="Filtering stop words", action="store_true", default=False) | ||
| 71 | + parser.add_option("--filterSymbols", dest="filterSymbols", help="Filtering punctuation marks", action="store_true", default=False) | ||
| 72 | + | ||
| 73 | + (options, args) = parser.parse_args() | ||
| 74 | + if len(args) > 0: | ||
| 75 | + parser.error("Any parameter given.") | ||
| 76 | + sys.exit(1) | ||
| 77 | + | ||
| 78 | + print('-------------------------------- PARAMETERS --------------------------------') | ||
| 79 | + print("Path to read input files: " + options.inputPath) | ||
| 80 | + print("Mode name: " + str(options.modelName)) | ||
| 81 | + print("Model path: " + options.modelPath) | ||
| 82 | + print("Path to place output files: " + options.outputPath) | ||
| 83 | + print("Filtering stop words: " + str(options.filterStopWords)) | ||
| 84 | + print("Levels: " + "S1: " + str(options.S1) + "S2: " + str(options.S2) + "S3: " + str(options.S3) + "S4: " + str(options.S4)) | ||
| 85 | + print("Run variant: " + str(options.variant)) | ||
| 86 | + | ||
| 87 | + symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{', | ||
| 88 | + '}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...'] | ||
| 89 | + | ||
| 90 | + print("Filtering symbols " + str(symbols) + ': ' + str(options.filterSymbols)) | ||
| 91 | + | ||
| 92 | + print('-------------------------------- PROCESSING --------------------------------') | ||
| 93 | + | ||
| 94 | + stopwords = [word for word in stopwords.words('english')] | ||
| 95 | + | ||
| 96 | + # Read CRF model | ||
| 97 | + t0 = time() | ||
| 98 | + print('Reading CRF model...') | ||
| 99 | + crf = joblib.load(os.path.join(options.modelPath, options.modelName + '.mod')) | ||
| 100 | + print("Reading CRF model done in: %fs" % (time() - t0)) | ||
| 101 | + | ||
| 102 | + # Reading sentences | ||
| 103 | + print('Processing corpus...') | ||
| 104 | + t0 = time() | ||
| 105 | + labels = list(['Gtype', 'Gversion', 'Med', 'Phase', 'Strain', 'Substrain', 'Supp', 'Technique', 'Temp', 'OD', 'Anti', 'Agit', 'Air', 'Vess', 'pH']) | ||
| 106 | + # Walk directory to read files | ||
| 107 | + for path, dirs, files in os.walk(options.inputPath): | ||
| 108 | + # For each file in dir | ||
| 109 | + for file in files: | ||
| 110 | + print("Preprocessing file..." + str(file)) | ||
| 111 | + sentencesInputData = [] | ||
| 112 | + sentencesOutputData = [] | ||
| 113 | + with open(os.path.join(options.inputPath, file), "r") as iFile: | ||
| 114 | + lines = iFile.readlines() | ||
| 115 | + for line in lines: | ||
| 116 | + listLine = [] | ||
| 117 | + for token in line.strip('\n').split(): | ||
| 118 | + if options.filterStopWords: | ||
| 119 | + listToken = token.split('|') | ||
| 120 | + lemma = listToken[1] | ||
| 121 | + if lemma in stopwords: | ||
| 122 | + continue | ||
| 123 | + if options.filterSymbols: | ||
| 124 | + listToken = token.split('|') | ||
| 125 | + lemma = listToken[1] | ||
| 126 | + if lemma in symbols: | ||
| 127 | + if lemma == ',': | ||
| 128 | + print("Coma , identificada") | ||
| 129 | + continue | ||
| 130 | + listLine.append(token) | ||
| 131 | + sentencesInputData.append(listLine) | ||
| 132 | + X_input = [training.sent2features(s, options.S1, options.S2, options.S3, options.S4, options.variant) for s in sentencesInputData] | ||
| 133 | + print("Sentences input data: " + str(len(sentencesInputData))) | ||
| 134 | + | ||
| 135 | + | ||
| 136 | + # Predicting tags | ||
| 137 | + t1 = time() | ||
| 138 | + print("Predicting tags with model") | ||
| 139 | + y_pred = crf.predict(X_input) | ||
| 140 | + print("Prediction done in: %fs" % (time() - t1)) | ||
| 141 | + | ||
| 142 | + | ||
| 143 | + # Tagging with CRF model | ||
| 144 | + print("Tagging file") | ||
| 145 | + for line, tagLine in zip(lines, y_pred): | ||
| 146 | + Ltags = set(labels).intersection(set(tagLine)) | ||
| 147 | + outputLine = '' | ||
| 148 | + line = line.strip('\n') | ||
| 149 | + #print("\nLine: " + str(line)) | ||
| 150 | + #print ("CRF tagged line: " + str(tagLine)) | ||
| 151 | + tb = 'O' | ||
| 152 | + i = 0 | ||
| 153 | + if len(tagLine)==1: | ||
| 154 | + if tagLine[0] in labels: | ||
| 155 | + start = '<' + tagLine[0] + '> ' | ||
| 156 | + end = '<' + tagLine[0] + '/>' | ||
| 157 | + word = line.split('|')[0] + ' ' | ||
| 158 | + outputLine = start + word + end | ||
| 159 | + else: | ||
| 160 | + outputLine = line.split(' ')[0] | ||
| 161 | + #print(outputLine + '\t' + ', '.join(Ltags)) | ||
| 162 | + sentencesOutputData.append([outputLine, ', '.join(Ltags)]) | ||
| 163 | + continue | ||
| 164 | + | ||
| 165 | + for word,tag in zip(line.split(' '), tagLine): | ||
| 166 | + # start tagging | ||
| 167 | + if tag in labels and tb == 'O': | ||
| 168 | + # start tagging | ||
| 169 | + outputLine += '<' + tag + '> ' | ||
| 170 | + tb = tag | ||
| 171 | + outputLine += word.split('|')[0] + ' ' | ||
| 172 | + i += 1 | ||
| 173 | + continue | ||
| 174 | + # end tagging | ||
| 175 | + elif tb in labels: | ||
| 176 | + if i+1==len(tagLine): | ||
| 177 | + # end tagging | ||
| 178 | + outputLine += word.split('|')[0] + ' ' | ||
| 179 | + outputLine += '<' + tag + '/> ' | ||
| 180 | + tb = 'O' | ||
| 181 | + i += 1 | ||
| 182 | + continue | ||
| 183 | + elif tagLine[i+1]=='O': | ||
| 184 | + # end tagging | ||
| 185 | + outputLine += word.split('|')[0] + ' ' | ||
| 186 | + outputLine += '<' + tag + '/> ' | ||
| 187 | + tb = 'O' | ||
| 188 | + i += 1 | ||
| 189 | + continue | ||
| 190 | + # word tagged | ||
| 191 | + outputLine += word.split('|')[0] + ' ' | ||
| 192 | + i += 1 | ||
| 193 | + #print(outputLine + '\t' + ', '.join(Ltags)) | ||
| 194 | + sentencesOutputData.append([outputLine, ', '.join(Ltags)]) | ||
| 195 | + | ||
| 196 | + print( DF(sentencesOutputData) ) | ||
| 197 | + | ||
| 198 | + # Save tags | ||
| 199 | + ''' | ||
| 200 | + with open(os.path.join(options.outputPath, file), "w") as oFile: | ||
| 201 | + for line in sentencesOutputData: | ||
| 202 | + oFile.write(line + '\n') | ||
| 203 | + | ||
| 204 | + print("Processing corpus done in: %fs" % (time() - t0)) | ||
| 205 | +''' | ||
| 206 | + | ||
| 207 | + | ||
| 208 | + | ||
| 209 | + | ||
| 210 | + | ||
| 211 | + | ||
| 212 | + | ||
| 213 | + | 
predict-annot/bin/tagging/tlibs.py
0 → 100644
| 1 | +# -*- coding: UTF-8 -*- | ||
| 2 | + | ||
| 3 | +import os | ||
| 4 | +from optparse import OptionParser | ||
| 5 | +from time import time | ||
| 6 | +from collections import Counter | ||
| 7 | + | ||
| 8 | +import nltk | ||
| 9 | +import sklearn | ||
| 10 | +import scipy.stats | ||
| 11 | +import sys | ||
| 12 | + | ||
| 13 | +#from sklearn.externals import joblib | ||
| 14 | +import joblib | ||
| 15 | +from sklearn.metrics import make_scorer | ||
| 16 | +#from sklearn.cross_validation import cross_val_score | ||
| 17 | +from sklearn.model_selection import cross_val_score | ||
| 18 | +#from sklearn.grid_search import RandomizedSearchCV | ||
| 19 | +from sklearn.model_selection import RandomizedSearchCV | ||
| 20 | + | ||
| 21 | +import sklearn_crfsuite | ||
| 22 | +from sklearn_crfsuite import scorers | ||
| 23 | +from sklearn_crfsuite import metrics | ||
| 24 | + | ||
| 25 | +from nltk.corpus import stopwords | ||
| 26 | + | ||
| 27 | +################################# | 
This diff is collapsed. Click to expand it.
This diff could not be displayed because it is too large.
| 1 | +-------------------------------- PARAMETERS -------------------------------- | ||
| 2 | +Path to read input files: /home/egaytan/automatic-extraction-growth-conditions/predict-annot/input/ | ||
| 3 | +Mode name: model_Run3_v10_S1_False_S2_True_S3_False_S4_False_Run3_v10 | ||
| 4 | +Model path: /home/egaytan/automatic-extraction-growth-conditions/CRF/models | ||
| 5 | +Path to place output files: /home/egaytan/automatic-extraction-growth-conditions/predict-annot/output/ | ||
| 6 | +Filtering stop words: False | ||
| 7 | +Levels: S1: FalseS2: FalseS3: FalseS4: False | ||
| 8 | +Run variant: None | ||
| 9 | +Filtering symbols ['.', ',', ':', ';', '?', '!', "'", '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{', '}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...']: False | ||
| 10 | +-------------------------------- PROCESSING -------------------------------- | ||
| 11 | +Reading CRF model... | ||
| 12 | +Reading CRF model done in: 0.008342s | ||
| 13 | +Processing corpus... | ||
| 14 | +Preprocessing file...annot-input_bg_v3.txt | ||
| 15 | +Sentences input data: 14716 | ||
| 16 | +Predicting tags with model | ||
| 17 | +Prediction done in: 0.983480s | ||
| 18 | +Tagging file | ||
| 19 | + 0 1 | ||
| 20 | +0 <Gtype> antibody : Flag <Gtype/> Gtype | ||
| 21 | +1 <Gversion> ChIP-Seq <Gversion/> Gversion | ||
| 22 | +2 Cultures of Caulobacter -LRB- TLS1631-TLS1633 ... Gtype | ||
| 23 | +3 <Gtype> developmental stage : mixed population... Gtype | ||
| 24 | +4 DNA was isolated using the Qiagen Cell Lysis a... | ||
| 25 | +5 Escherichia coli | ||
| 26 | +6 Escherichia coli AB1157 | ||
| 27 | +7 For analysis of ChIP-seq data , Hiseq 2500 Ill... | ||
| 28 | +8 For analysis of IDAP-seq data , Hiseq 2500 Ill... Gtype | ||
| 29 | +9 Genome _ build : NC _ 000913.3 | ||
| 30 | +10 Genome _ build : NC _ 011916.1 | ||
| 31 | +11 <Gtype> genotype : AB1157 ybbD : : parS scramb... Gtype | ||
| 32 | +12 <Gtype> genotype : AB1157 ybbD : : parS scramb... Gtype | ||
| 33 | +13 <Gtype> genotype : AB1157 ybbD : : parS site 1... Gtype | ||
| 34 | +14 <Gtype> genotype : AB1157 ybbD : : parS site 2... Gtype | ||
| 35 | +15 <Gtype> genotype : AB1157 ybbD : : parS site 2... Gtype | ||
| 36 | +16 <Gtype> genotype : AB1157 ybbD : : parS site 3... Gtype | ||
| 37 | +17 <Gtype> genotype : AB1157 ybbD : : parS site 3... Gtype | ||
| 38 | +18 <Gtype> genotype : AB1157 ybbD : : parS site 4... Gtype | ||
| 39 | +19 <Gtype> genotype : AB1157 ybbD : : parS site 4... Gtype | ||
| 40 | +20 <Gtype> genotype : AB1157 ybbD : : parS site 5... Gtype | ||
| 41 | +21 <Gtype> genotype : AB1157 ybbD : : parS site 5... Gtype | ||
| 42 | +22 <Gtype> genotype : AB1157 ybbD : : parS site 6... Gtype | ||
| 43 | +23 <Gtype> genotype : AB1157 ybbD : : parS site 7... Gtype | ||
| 44 | +24 <Gtype> genotype : AB1157 ybbD : : parS site 7... Gtype | ||
| 45 | +25 Hiseq 2500 Illumina short reads -LRB- 50 bp -R... | ||
| 46 | +26 LELab _ ChIP _ seq _ TLS1637 _ anti _ FLAG | ||
| 47 | +27 LELab _ ChIP _ seq _ TLS1638 _ anti _ FLAG | ||
| 48 | +28 LELab _ ChIP _ seq _ TLS1639 _ anti _ FLAG | ||
| 49 | +29 LELab _ ChIP _ seq _ TLS1640 _ anti _ FLAG | ||
| 50 | +... ... ... | ||
| 51 | +14686 <Phase> ESBL019 Coliform <Phase/> Phase | ||
| 52 | +14687 <Gtype> ESBL019 Filamented <Gtype/> Gtype | ||
| 53 | +14688 ESBL019 Reverted | ||
| 54 | +14689 <Phase> ESBL019 Transition <Phase/> Phase | ||
| 55 | +14690 Escherichia coli | ||
| 56 | +14691 Four morphologic states of ESBL019 were used d... | ||
| 57 | +14692 <Gtype> morphology : Coliform <Gtype/> Gtype | ||
| 58 | +14693 <Gtype> morphology : Filamented <Gtype/> Gtype | ||
| 59 | +14694 morphology : Reverted -LRB- reverted back from... | ||
| 60 | +14695 morphology : Transition -LRB- from Coli into F... | ||
| 61 | +14696 RNA isolation was performed using an RNeasy mi... | ||
| 62 | +14697 <Gtype> strain : beta-lactamase -LRB- ESBL -RR... Gtype | ||
| 63 | +14698 The E. coli isolate ESBL019 was originally iso... | ||
| 64 | +14699 Escherichia coli | ||
| 65 | +14700 lexA 10 ' after UV vs. 0 ' , MG1655 | ||
| 66 | +14701 <Gtype> lexA 10 min after UV treatment , 25 ug... Gtype | ||
| 67 | +14702 lexA 20 ' after NOuv vs. 0 ' , MG1655 | ||
| 68 | +14703 lexA 20 ' after UV vs. 0 ' , MG1655 | ||
| 69 | +14704 lexA 20 min after NOuv , 25 ug total RNA , 2 u... | ||
| 70 | +14705 <Gtype> lexA 20 min after UV treatment , 25 ug... Gtype | ||
| 71 | +14706 lexA 40 ' after UV vs. 0 ' , MG1655 | ||
| 72 | +14707 <Gtype> lexA 40 min after UV treatment , 25 ug... Gtype | ||
| 73 | +14708 lexA 5 ' after UV vs. 0 ' , MG1655 | ||
| 74 | +14709 <Gtype> lexA 5 min after UV treatment , 25 ug ... Gtype | ||
| 75 | +14710 lexA 60 ' after NOuv vs. 0 ' , MG1655 | ||
| 76 | +14711 lexA 60 ' after UV vs. 0 ' , MG1655 | ||
| 77 | +14712 lexA 60 min after NOuv , 25 ug total RNA , 2 u... | ||
| 78 | +14713 <Gtype> lexA 60 min after UV treatment , 25 ug... Gtype | ||
| 79 | +14714 lexA vs. wt , before UV treatment , MG1655 | ||
| 80 | +14715 untreated cells , 25 ug total RNA | ||
| 81 | + | ||
| 82 | +[14716 rows x 2 columns] | 
- 
Please register or login to post a comment