Showing
1 changed file
with
34 additions
and
12 deletions
... | @@ -3,7 +3,8 @@ from sklearn.cross_validation import train_test_split as splitt | ... | @@ -3,7 +3,8 @@ from sklearn.cross_validation import train_test_split as splitt |
3 | from sklearn.feature_extraction.text import TfidfVectorizer | 3 | from sklearn.feature_extraction.text import TfidfVectorizer |
4 | from sklearn.model_selection import RandomizedSearchCV | 4 | from sklearn.model_selection import RandomizedSearchCV |
5 | from sklearn.model_selection import GridSearchCV | 5 | from sklearn.model_selection import GridSearchCV |
6 | -from sklearn import metrics | 6 | +from sklearn.model_selection import train_test_split |
7 | +from sklearn.metrics import recall_score, precision_score, f1_score, classification_report | ||
7 | from sklearn.svm import SVC | 8 | from sklearn.svm import SVC |
8 | import numpy as np | 9 | import numpy as np |
9 | import argparse | 10 | import argparse |
... | @@ -16,18 +17,23 @@ from scipy.stats import expon | ... | @@ -16,18 +17,23 @@ from scipy.stats import expon |
16 | from sklearn.preprocessing import label_binarize | 17 | from sklearn.preprocessing import label_binarize |
17 | from sklearn.datasets import load_files | 18 | from sklearn.datasets import load_files |
18 | 19 | ||
20 | +# CMC: Run example | ||
21 | +# python3.4 filter_papers.py --traind /home/cmendezc/gitlab_repositories/useless/data/TEXT_FILES | ||
19 | 22 | ||
20 | parser = argparse.ArgumentParser( | 23 | parser = argparse.ArgumentParser( |
21 | description="This script separates biomedical papers that" | 24 | description="This script separates biomedical papers that" |
22 | "report data from biomedical experiments from those that do not.") | 25 | "report data from biomedical experiments from those that do not.") |
23 | -parser.add_argument("--input", help="Input file containing the to" | 26 | +parser.add_argument("--input", help="Input directory containing the papers to" |
24 | "be predited.") | 27 | "be predited.") |
25 | parser.add_argument("--traind", help="Input directory containing the papers of" | 28 | parser.add_argument("--traind", help="Input directory containing the papers of" |
26 | "two classes to be learned.") | 29 | "two classes to be learned.") |
27 | parser.add_argument("--out", help="Path to the output directory " | 30 | parser.add_argument("--out", help="Path to the output directory " |
28 | "(default='./filter_output')", default="filter_output") | 31 | "(default='./filter_output')", default="filter_output") |
29 | parser.add_argument("--svcmodel", help="Path to custom pretrained svc model" | 32 | parser.add_argument("--svcmodel", help="Path to custom pretrained svc model" |
30 | - "(default='./model/svm_model.paper.pkl')", default="model/svm_model.paper.pkl") | 33 | + "(default='./model_binClass/svm_model.paper.pkl')", default="model_binClass/svm_model.paper.pkl") |
34 | +parser.add_argument("--split", default=False, | ||
35 | + action="store_true", dest="split", | ||
36 | + help="Automatic split training/test of input data ") | ||
31 | 37 | ||
32 | args = parser.parse_args() | 38 | args = parser.parse_args() |
33 | labels = {0: 'useless', 1: 'useful'} | 39 | labels = {0: 'useless', 1: 'useful'} |
... | @@ -56,11 +62,20 @@ if args.traind and not args.input: | ... | @@ -56,11 +62,20 @@ if args.traind and not args.input: |
56 | 62 | ||
57 | model_params = {k: list(set(model_params[k])) for k in model_params} | 63 | model_params = {k: list(set(model_params[k])) for k in model_params} |
58 | 64 | ||
65 | + # CMC: separate in training - validation datasets | ||
66 | + if args.split: | ||
67 | + X_train, X_test, y_train, y_test = train_test_split(data.data, labels, test_size = 0.25, random_state = 42) | ||
68 | + tfidf_model = vectorizer.fit(X_train) | ||
69 | + X = vectorizer.transform(X_train) | ||
70 | + y = y_train | ||
71 | + else: | ||
72 | + #y = [x['topic'] for x in abstracs] | ||
73 | + # Original Nacho: | ||
59 | tfidf_model = vectorizer.fit(data.data) | 74 | tfidf_model = vectorizer.fit(data.data) |
60 | X = vectorizer.transform(data.data) | 75 | X = vectorizer.transform(data.data) |
61 | - #y = [x['topic'] for x in abstracs] | ||
62 | y = data.target | 76 | y = data.target |
63 | 77 | ||
78 | + | ||
64 | #X_train, X_test, y_train, y_test = splitt(X, y, test_size=0.3, random_state=42) | 79 | #X_train, X_test, y_train, y_test = splitt(X, y, test_size=0.3, random_state=42) |
65 | 80 | ||
66 | clf = SVC()#kernel='linear', C=100.0, gamma=0.0001)# degree=11, coef0=0.9) | 81 | clf = SVC()#kernel='linear', C=100.0, gamma=0.0001)# degree=11, coef0=0.9) |
... | @@ -81,15 +96,22 @@ if args.traind and not args.input: | ... | @@ -81,15 +96,22 @@ if args.traind and not args.input: |
81 | #print(metrics.f1_score(clf.predict(X_test), y_test)) | 96 | #print(metrics.f1_score(clf.predict(X_test), y_test)) |
82 | 97 | ||
83 | #joblib.dump(clf, 'model/svm_model.pkl') | 98 | #joblib.dump(clf, 'model/svm_model.pkl') |
84 | - joblib.dump(clf.best_estimator_, 'model/svm_model.paper.pkl') | 99 | + joblib.dump(clf.best_estimator_, 'model_binClass/svm_model.paper.pkl') |
85 | - joblib.dump(tfidf_model, 'model/tfidf_model.paper.pkl') | 100 | + joblib.dump(tfidf_model, 'model_binClass/tfidf_model.paper.pkl') |
86 | 101 | ||
102 | + if args.split: | ||
103 | + X = vectorizer.transform(X_test) | ||
104 | + y_pred = clf.predict(X) | ||
105 | + print(precision_score(y_test, y_pred)) | ||
106 | + print(recall_score(y_test, y_pred)) | ||
107 | + print(f1_score(y_test, y_pred)) | ||
108 | + print(classification_report(y_test, y_pred)) | ||
87 | else: | 109 | else: |
88 | from pdb import set_trace as st | 110 | from pdb import set_trace as st |
89 | data=load_files(container_path=args.input, encoding=None, | 111 | data=load_files(container_path=args.input, encoding=None, |
90 | decode_error='replace') | 112 | decode_error='replace') |
91 | clf = joblib.load(args.svcmodel) | 113 | clf = joblib.load(args.svcmodel) |
92 | - vectorizer = joblib.load('model/tfidf_model.paper.pkl') | 114 | + vectorizer = joblib.load('model_binClass/tfidf_model.paper.pkl') |
93 | X = vectorizer.transform(data.data) | 115 | X = vectorizer.transform(data.data) |
94 | 116 | ||
95 | classes = clf.predict(X) | 117 | classes = clf.predict(X) |
... | @@ -97,10 +119,10 @@ else: | ... | @@ -97,10 +119,10 @@ else: |
97 | if not os.path.exists(args.out): | 119 | if not os.path.exists(args.out): |
98 | os.makedirs(args.out) | 120 | os.makedirs(args.out) |
99 | # Writing predictions to output files | 121 | # Writing predictions to output files |
100 | - with open(args.out + "/" + labels[0] + ".out", 'w') as f0, \ | 122 | + with open(args.out + "/" + labels[0] + "-binClass-paper.out", 'w') as f0, \ |
101 | - open(args.out + "/" + labels[1] + ".out", 'w') as f1: | 123 | + open(args.out + "/" + labels[1] + "-binClass-paper.out", 'w') as f1: |
102 | - for c, a in zip(classes, papers): | 124 | + for c, a in zip(classes, data): |
103 | if c == 0: | 125 | if c == 0: |
104 | - f0.write("%d\t%s\n" % (a['title'], a['body'])) | 126 | + f0.write("%d\n" % (a['title'])) |
105 | elif c == 1: | 127 | elif c == 1: |
106 | - f1.write("%d\t%s\n" % (a['title'], a['body'])) | 128 | + f1.write("%d\n" % (a['title'])) | ... | ... |
-
Please register or login to post a comment